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This loudspeaker cone generates 
sound waves by oscillating back 
and forth at audio frequencies.

Oscillations

 Looking Ahead The goal of Chapter 14 is to understand systems that oscillate with simple harmonic motion.

In this chapter you will learn to:

■	 Represent simple harmonic motion 
both graphically and mathematically.

■	 Understand the dynamics of oscillat-
ing systems.

■	 Recognize the similarities among 
many types of oscillating systems.

Simple harmonic motion has a very 
close connection to uniform circular 
motion. You’ll learn that an edge-on 
view of uniform circular motion is none 
other than simple harmonic motion.

Simple Harmonic Motion
The most basic 
oscillation, with 
sinusoidal motion, 
is called simple 
harmonic motion.

The oscillating cart 
is an example of 
simple harmonic 
motion. You’ll learn 
how to use the 
mass and the spring 
constant to deter­
mine the frequency 
of oscillation.

 Looking Back
Section 4.5 Uniform circular motion

Oscillation

Pendulums
A mass swinging at the end of a string or 
rod is a pendulum. Its motion is another 
example of simple harmonic motion.

The period of a pendu­
lum is determined by 
the length of the string; 
neither the mass nor 
the amplitude matters. 
Consequently, the pen­
dulum was the basis of 
time keeping for many 
centuries.

Damping and Resonance
If there’s drag or other dissipation, then 
the oscillation “runs down.” This is 
called a damped oscillation.

The amplitude of 
a damped oscil­
lation undergoes 
exponential 
decay.

Oscillations can increase in amplitude, 
sometimes dramatically, when driven at 
their natural oscillation frequency. This 
is called resonance.

t

x

0

�A

A

Energy of Oscillations
If there is no friction or other dissipa-
tion, then the mechanical energy of an 
oscillator is conserved. Conservation of 
energy will be an important tool.

The system oscil­
lates between all 
kinetic energy and 
all potential energy

 Looking Back
Section 10.5 Elastic potential energy
Section 10.6 Energy diagrams

0

All potential

All kinetic

A
x

�A

Springs
Simple harmonic motion occurs when 
there is a linear restoring force. The 
simplest example is 
a mass on a spring. 
You will learn how to 
determine the period 
of oscillation.

The “bounce” at the 
bottom of a bungee 
jump is an exhilarating 
example of a mass 
oscillating on a spring.

 Looking Back
Section 10.4 Restoring forces
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14.1 Simple Harmonic Motion
Objects or systems of objects that undergo oscillatory motion—a repetitive motion 
back and forth around an equilibrium position—are called oscillators. FiguRE 14.1 
shows position-versus-time graphs for three different oscillating systems. Although 
the shapes of the graphs are different, all these oscillators have two things in common:

 1. The oscillation takes place about an equilibrium position, and
 2. The motion is periodic, repeating at regular intervals of time.

The time to complete one full cycle, or one oscillation, is called the period of the 
motion. Period is represented by the symbol T.

A closely related piece of information is the number of cycles, or oscillations, com-
pleted per second. If the period is 1

10 s, then the oscillator can complete 10 cycles 
in one second. Conversely, an oscillation period of 10 s allows only 1

10 of a cycle to be 
completed per second. In general, T seconds per cycle implies that 1/T  cycles will be 
completed each second. The number of cycles per second is called the frequency f  of 
the oscillation. The relationship between frequency and period is

 f =
1

T
  or  T =

1

f
 (14.1)

The units of frequency are hertz, abbreviated Hz, named in honor of the German 
physicist Heinrich Hertz, who produced the first artificially generated radio waves in 
1887. By definition,

 1 Hz K 1 cycle per second = 1 s-1

We will frequently deal with very rapid oscillations and make use of the units shown 
in Table 14.1.

NOTE  Uppercase and lowercase letters are important. 1 MHz is 1 megahertz =  
106 Hz, but 1 mHz is 1 millihertz = 10-3 Hz! 

t

Position
T

The oscillation takes
place around an 
equilibrium position.

t

Position
T

The motion is periodic.
One cycle takes time T.

t

Position
T This oscillation

is sinusoidal.

FiguRE 14.1 Examples of position­versus­
time graphs for oscillating systems.

TABLE 14.1 Units of frequency

Frequency Period

103 Hz = 1 kilohertz = 1 kHz 1 ms

106 Hz = 1 megahertz = 1 MHz 1 ms

109 Hz = 1 gigahertz = 1 GHz 1 ns

ExAMPLE 14.1  Frequency and period of a loudspeaker cone
What is the oscillation period of a loudspeaker cone that vibrates back and forth 5000 times 
per second?

SOLvE The oscillation frequency is f = 5000 cycles/s = 5000 Hz = 5.0 kHz. The period 
is the inverse of the frequency; hence

T =
1

f
=

1

5000 Hz
= 2.0 * 10-4 s = 200 ms

A system can oscillate in many ways, but we will be especially interested in 
the smooth sinusoidal oscillation (i.e., like a sine or cosine) of the third graph in 
Figure 14.1. This sinusoidal oscillation, the most basic of all oscillatory motions, is 
called simple harmonic motion, often abbreviated SHM. Let’s look at a graphical 
description before we dive into the mathematics of simple harmonic motion.

FiguRE 14.2a shows an air-track glider attached to a spring. If the glider is pulled out 
a few centimeters and released, it will oscillate back and forth on the nearly friction-
less air track. FiguRE 14.2b shows actual results from an experiment in which a com-
puter was used to measure the glider’s position 20 times every second. This is a 
position-versus-time graph that has been rotated 90� from its usual orientation in order 
for the x-axis to match the motion of the glider.

The object’s maximum displacement from equilibrium is called the amplitude A 
of the motion. The object’s position oscillates between x = -A and x = +A. When 
using a graph, notice that the amplitude is the distance from the axis to the maximum, 
not the distance from the minimum to the maximum.

Air track

Oscillation(a)

(b)

x

t

0�A A

A

A

x is measured from 
the equilibrium
position where 
the object would 
be at rest.Turning

point

The motion 
is sinusoidal, 
indicating
SHM.

The motion is symmetrical about the
equilibrium position. Maximum distance
to the left and to the right is A.

The point on the
object that is
measured

FiguRE 14.2 A prototype simple­
harmonic­motion experiment.
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14.1 . Simple Harmonic Motion    379

FiguRE 14.3a shows the data with the graph axes in their “normal” positions. You 
can see that the amplitude in this experiment was A = 0.17 m, or 17 cm. You can 
also measure the period to be T = 1.60 s. Thus the oscillation frequency was 
f = 1/T = 0.625 Hz.

FiguRE 14.3b is a velocity-versus-time graph that the computer produced by using 
�x/�t to find the slope of the position graph at each point. The velocity graph is also 
sinusoidal, oscillating between -vmax  (maximum speed to the left) and +vmax (maxi-
mum speed to the right). As the figure shows,

	■	 The instantaneous velocity is zero at the points where x = {A. These are the turn­
ing points in the motion.

	■	 The maximum speed vmax is reached as the object passes through the equilibrium 
position at x = 0 m. The velocity is positive as the object moves to the right but 
negative as it moves to the left.

We can ask three important questions about this oscillating system:

 1. How is the maximum speed vmax related to the amplitude A?
 2. How are the period and frequency related to the object’s mass m, the spring 

constant k, and the amplitude A?
 3. Is the sinusoidal oscillation a consequence of Newton’s laws?

A mass oscillating on a spring is the prototype of simple harmonic motion. Our 
analysis, in which we answer these questions, will be of a spring-mass system. Even 
so, most of what we learn will be applicable to other types of SHM.

Kinematics of Simple Harmonic Motion
FiguRE 14.4 redraws the position-versus-time graph of Figure 14.3a as a smooth curve. 
Although these are empirical data (we don’t yet have any “theory” of oscillation) the 
graph for this particular motion is clearly a cosine function. The object’s position is

 x(t) = A cos12pt

T 2  (14.2)

where the notation x(t) indicates that the position x is a function of time t. Because 
cos(2p) = cos(0), it’s easy to see that the position at time t = T  is the same as the posi-
tion at t = 0. In other words, this is a cosine function with period T. Be sure to convince 
yourself that this function agrees with the five special points shown in Figure 14.4.

NOTE  The argument of the cosine function is in radians. That will be true through-
out this chapter. It’s especially important to remember to set your calculator to 
radian mode before working oscillation problems. Leaving it in degree mode will 
lead to errors. 

We can write Equation 14.2 in two alternative forms. Because the oscillation fre-
quency is f = 1/T, we can write

 x(t) = A cos(2pft) (14.3)

Recall from Chapter 4 that a particle in circular motion has an angular velocity v that 
is related to the period by v = 2p/T, where v is in rad/s. Now that we’ve defined the 
frequency f, you can see that v and f  are related by

 v (in rad/s) =
2p

T
= 2pf (in Hz) (14.4)

In this context, v is called the angular frequency. The position can be written in terms 
of v as

 x(t) = A cos vt (14.5)

Equations 14.2, 14.3, and 14.5 are equivalent ways to write the position of an object 
moving in simple harmonic motion.

t (s)

x (m)

0

�0.2

2.0 4.0 6.0

�0.1

0

0.1

0.2

(a) The speed is zero
when x � �A.

The speed is maximum
as the object passes
through x � 0.

x � �A � 0.17 m

T � 1.60 s

x � �A � �0.17 m

t (s)

vx (m/s)

0 2.0 4.0 6.0

�0.7

0

0.7

(b)

v � �vmax

v � �vmax

FiguRE 14.3 Position and velocity graphs 
of the experimental data.

t

x

0
T 2T

�A

A

1. Starts at x � A

5. Returns to
 x � A at t � T

3. Reaches x � �A at t �   T1
2

4. Passes through x � 0 at t �   T3
4

2. Passes through
 x � 0 at t �   T1

4

FiguRE 14.4 The position­versus­time 
graph for simple harmonic motion.

TABLE 14.2 Derivatives of sine and 
cosine functions

d

dt
1a sin(bt + c)2 = +ab cos(bt + c)

d

dt
 1a cos(bt + c)2 = -ab sin(bt + c)
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Just as the position graph was clearly a cosine function, the velocity graph shown 
in FiguRE 14.5 is clearly an “upside-down” sine function with the same period T. The 
velocity vx, which is a function of time, can be written

 vx(t) = -vmax sin12pt

T 2 = -vmax sin(2pft) = -vmax sin vt (14.6)

NOTE  vmax is the maximum speed and thus is a positive number. 

We deduced Equation 14.6 from the experimental results, but we could equally well 
find it from the position function of Equation 14.2. After all, velocity is the time deriva-
tive of position. Table 14.2 on the previous page reminds you of the derivatives of the 
sine and cosine functions. Using the derivative of the position function, we find

 vx(t) =
dx

dt
= -  

2pA

T
 sin12pt

T 2 = -2pfA sin(2pft) = -vA sin vt (14.7)

Comparing Equation 14.7, the mathematical definition of velocity, to Equation 14.6, 
the empirical description, we see that the maximum speed of an oscillation is

 vmax =
2pA

T
= 2pfA = vA (14.8)

Equation 14.8 answers the first question we posed above, which was how the maximum 
speed vmax is related to the amplitude A. Not surprisingly, the object has a greater maxi-
mum speed if you stretch the spring farther and give the oscillation a larger amplitude.

t

Velocity vx

0
T 2T

�vmax

vmax

t

Position x

0
T 2T

�A

A

T

v(t) � �vmax sin vt

T

x(t) � A cos vt

FiguRE 14.5 Position and velocity graphs 
for simple harmonic motion.

 c. The object starts at x = +A at t = 0 s. This is exactly the 
oscillation described by Equations 14.2 and 14.6. The position 
at t = 0.800 s is

  x = A cos12pt

T 2 = (0.200 m) cos12p (0.800 s)

0.667 s 2
  = (0.200 m)cos(7.54 rad) = 0.0625 m = 6.25 cm

  The velocity at this instant of time is

  vx = -vmax sin12pt

T 2 = - (1.88 m/s) sin12p(0.800 s)

0.667 s 2
  = - (1.88 m/s) sin(7.54 rad) = -1.79 m/s = -179 cm/s

  At t = 0.800 s, which is slightly more than one period, the ob-
ject is 6.25 cm to the right of equilibrium and moving to the left 
at 179 cm/s. Notice the use of radians in the calculations.

ExAMPLE 14.2  A system in simple harmonic motion
An air-track glider is attached to a spring, pulled 20.0 cm to the 
right, and released at t = 0 s. It makes 15 oscillations in 10.0 s.

 a. What is the period of oscillation?
 b. What is the object’s maximum speed?
 c. What are the position and velocity at t = 0.800 s?

MODEL An object oscillating on a spring is in SHM.

SOLvE a. The oscillation frequency is

f =
15 oscillations

10.0 s
= 1.50 oscillations/s = 1.50 Hz

Thus the period is T = 1/f = 0.667 s.
 b. The oscillation amplitude is A = 0.200 m. Thus

vmax =
2pA

T
=

2p(0.200 m)

0.667 s
= 1.88 m/s

 x =
A

2
= A cos12pt

T 2
Then we solve for the time at which this position is reached:

 t =
T

2p
 cos-1112 2 = T

2p
 
p

3
=

1

6
 T

ASSESS The motion is slow at the beginning and then speeds up, 
so it takes longer to move from x = A to x =

1
2 A than it does to 

move from x =
1
2 A to x = 0. Notice that the answer is indepen-

dent of the amplitude A.

ExAMPLE 14.3  Finding the time
A mass oscillating in simple harmonic motion starts at x = A and 
has period T. At what time, as a fraction of T, does the object first 
pass through x =

1
2 A?

SOLvE Figure 14.4 showed that the object passes through the 
equilibrium position x = 0 at t = 1

4 T. This is one-quarter of the 
total distance in one-quarter of a period. You might expect it to 
take 1

8 T  to reach 1
2 A, but this is not the case because the SHM 

graph is not linear between x = A and x = 0. We need to use 
x (t) = A cos(2pt/T). First, we write the equation with x =

1
2 A:
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Stop to think 14.1  An object moves with simple harmonic motion. If the amplitude 
and the period are both doubled, the object’s maximum speed is

 a. Quadrupled. b. Doubled. c. Unchanged.
 d. Halved. e. Quartered.

14.2  Simple Harmonic Motion 
and Circular Motion

The graphs of Figure 14.5 and the position function x(t) = A cos vt are for an oscilla-
tion in which the object just happened to be at x0 = A at t = 0. But you will recall that 
t = 0 is an arbitrary choice, the instant of time when you or someone else starts a stop-
watch. What if you had started the stopwatch when the object was at x0 = -A, or when 
the object was somewhere in the middle of an oscillation? In other words, what if the 
oscillator had different initial conditions. The position graph would still show an oscil-
lation, but neither Figure 14.5 nor x(t) = A cos vt would describe the motion correctly.

To learn how to describe the oscillation for other initial conditions it will help to 
turn to a topic you studied in Chapter 4—circular motion. There’s a very close connec-
tion between simple harmonic motion and circular motion.

Imagine you have a turntable with a small ball glued to the edge. FiguRE 14.6a shows 
how to make a “shadow movie” of the ball by projecting a light past the ball and onto 
a screen. The ball’s shadow oscillates back and forth as the turntable rotates. This is 
certainly periodic motion, with the same period as the turntable, but is it simple har-
monic motion?

To find out, you could place a real object on a real spring directly below the shad-
ow, as shown in FiguRE 14.6b. If you did so, and if you adjusted the turntable to have the 
same period as the spring, you would find that the shadow’s motion exactly matches 
the simple harmonic motion of the object on the spring. Uniform circular motion 
projected onto one dimension is simple harmonic motion.

To understand this, consider the particle in FiguRE 14.7. It is in uniform circular 
motion, moving counterclockwise in a circle with radius A. As in Chapter 4, we can 
locate the particle by the angle f measured ccw from the x-axis. Projecting the ball’s 
shadow onto a screen in Figure 14.6 is equivalent to observing just the x-component 
of the particle’s motion. Figure 14.7 shows that the x-component, when the particle is 
at angle f, is

 x = A cos f (14.9)

Recall that the particle’s angular velocity, in rad/s, is

 v =
df

dt
 (14.10)

This is the rate at which the angle f is increasing. If the particle starts from f0 = 0 at 
t = 0, its angle at a later time t is simply

 f = vt (14.11)

As f increases, the particle’s x-component is

 x(t) = A cos vt (14.12)

This is identical to Equation 14.5 for the position of a mass on a spring! Thus the 
x-component of a particle in uniform circular motion is simple harmonic motion.

NOTE  When used to describe oscillatory motion, v is called the angular fre­
quency rather than the angular velocity. The angular frequency of an oscillator has 
the same numerical value, in rad/s, as the angular velocity of the corresponding 
particle in circular motion. 

(a) Light from projector

Screen
Shadow

Oscillation of ball’s shadow

Ball

Circular
motion
of ball

Turntable

Simple harmonic motion of block(b)

FiguRE 14.6 A projection of the circular 
motion of a rotating ball matches the 
simple harmonic motion of an object on 
a spring.

x

y

�A A

A

v

v

The x-component of
the particle’s position
describes the position
of the ball’s shadow.

A cos f

A cos f

0

Particle in uniform
circular motion

f

x
0�A A

FiguRE 14.7 A particle in uniform 
circular motion with radius A and 
angular velocity v.
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The names and units can be a bit confusing until you get used to them. It may help 
to notice that cycle and oscillation are not true units. Unlike the “standard meter” or the 
“standard kilogram,” to which you could compare a length or a mass, there is no “stan-
dard cycle” to which you can compare an oscillation. Cycles and oscillations are sim ply 
counted events. Thus the frequency f  has units of hertz, where 1 Hz = 1 s-1. We may 
say “cycles per second” just to be clear, but the actual units are only “per second.”

The radian is the SI unit of angle. However, the radian is a defined unit. Further, its 
definition as a ratio of two lengths (u = s/r) makes it a pure number without dimen-
sions. As we noted in Chapter 4, the unit of angle, be it radians or degrees, is really just 
a name to remind us that we’re dealing with an angle. The 2p in the equation v = 2pf  
(and in similar situations), which is stated without units, means 2p rad/cycle. When 
multiplied by the frequency f  in cycles/s, it gives the frequency in rad/s. That is why, 
in this context, v is called the angular frequency.

NOTE  Hertz is specifically “cycles per second” or “oscillations per second.” It is 
used for f  but not for v. We’ll always be careful to use rad/s for v, but you should 
be aware that many books give the units of v as simply s-1. 

The Phase Constant
Now we’re ready to consider the issue of other initial conditions. The particle in 
Figure 14.7 started at f0 = 0. This was equivalent to an oscillator starting at the far 
right edge, x0 = A. FiguRE 14.8 shows a more general situation in which the initial angle 
f0 can have any value. The angle at a later time t is then

 f = vt + f0 (14.13)

In this case, the particle’s projection onto the x-axis at time t is

 x(t) = A cos(vt + f0) (14.14)

If Equation 14.14 describes the particle’s projection, then it must also be the posi-
tion of an oscillator in simple harmonic motion. The oscillator’s velocity vx is found 
by taking the derivative dx/dt. The resulting equations,

  x(t) = A cos(vt + f0)

  vx(t) = -vA sin(vt + f0) = -vmax sin(vt + f0) 
(14.15)

are the two primary kinematic equations of simple harmonic motion.
The quantity f = vt + f0, which steadily increases with time, is called the phase 

of the oscillation. The phase is simply the angle of the circular-motion particle whose 
shadow matches the oscillator. The constant f0 is called the phase constant. It speci-
fies the initial conditions of the oscillator.

To see what the phase constant means, set t = 0 in Equations 14.15:

  x0 = A cos f0

  v0x = -vA sin f0 
(14.16)

The position x0 and velocity v0x at t = 0 are the initial conditions. Different values of 
the phase constant correspond to different starting points on the circle and thus 
to different initial conditions.

The perfect cosine function of Figure 14.5 and the equation x(t) = A cos vt are for 
an oscillation with f0 = 0 rad. You can see from Equations 14.16 that f0 = 0 rad im-
plies x0 = A and v0 = 0. That is, the particle starts from rest at the point of maximum 
displacement.

FiguRE 14.9 illustrates these ideas by looking at three values of the phase constant: 
f0 = p/3 rad (60�), -p/3 rad (-60�), and p rad (180�). Notice that f0 = p/3 rad and 
f0 = -p/3 rad have the same starting position, x0 =

1
2 A. This is a property of the co-

sine function in Equation 14.16. But these are not the same initial conditions. In one case 
the oscillator starts at 12 A while moving to the right, in the other case it starts at 12 A while 
moving to the left. You can distinguish between the two by visualizing the motion.

A cup on the turntable in a microwave 
oven moves in a circle. But from the 
outside, you see the cup sliding back and 
forth—in simple harmonic motion!

x

y

�A A

A

v

v

A cos f
x0 � A cos f0

0

Initial position of 
particle at t � 0

The initial x-component of the 
particle’s position can be anywhere 
between �A and A, depending on f0.

Angle at time t is
f � vt � f0.

f0
f

FiguRE 14.8 A particle in uniform 
circular motion with initial angle f0.
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All values of the phase constant f0 between 0 and p rad correspond to a particle in 
the upper half of the circle and moving to the left. Thus v0x is negative. All values of the 
phase constant f0 between p and 2p rad (or, as they are usually stated, between -p 
and 0 rad) have the particle in the lower half of the circle and moving to the right. Thus 
v0x is positive. If you’re told that the oscillator is at x =

1
2 A and moving to the right at 

t = 0, then the phase constant must be f0 = -p/3 rad, not +p/3 rad.
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f0 � p/3 rad f0 � �p/3 rad f0 � p rad

t

x

A

0
T

�A

t

v

vmax

0
T

�vmax

x
A�A 0

�AA1
2

A1
2 A1

2

A1
2

3

3

p

p

The starting point of the oscillation is
shown on the circle and on the graph.

The graphs each have the same
amplitude and period. They are
shifted relative to the f0 � 0 rad
graphs of Figure 14.5 because they
have different initial conditions.

FiguRE 14.9 Oscillations described by the phase constants f0 = p/3 rad, -p/3 rad, and p rad.

Thus the object’s position at time t = 2.0 s is

  x (t) = A cos(vt + f0)

  = (10 cm) cos1 (7.85 rad/s) (2.0 s) +
2

3
 p2

  = (10 cm) cos(17.8 rad) = 5.0 cm

The object is now 5.0 cm to the right of equilibrium. But which 
way is it moving? There are two ways to find out. The direct way 
is to calculate the velocity at t = 2.0 s:

 vx = -vA sin(vt + f0) = +68 cm/s

The velocity is positive, so the motion is to the right. Alterna-
tively, we could note that the phase at t = 2.0 s is f = 17.8 rad. 
Dividing by p, you can see that

 f = 17.8 rad = 5.67p rad = (4p + 1.67p) rad

The 4p rad represents two complete revolutions. The “extra” 
phase of 1.67p rad falls between p and 2p rad, so the particle in 
the circular-motion diagram is in the lower half of the circle and 
moving to the right.

ExAMPLE 14.4  using the initial conditions
An object on a spring oscillates with a period of 0.80 s and an 
amplitude of 10 cm. At t = 0 s, it is 5.0 cm to the left of equilib-
rium and moving to the left. What are its position and direction of 
motion at t = 2.0 s?

MODEL An object oscillating on a spring is in simple harmonic 
motion.

SOLvE We can find the phase constant f0 from the initial condi-
tion x0 = -5.0 cm = A cos f0. This condition gives

 f0 = cos-11x0

A 2 = cos-11-  
1

2 2 = {  
2

3
 p rad = {120�

Because the oscillator is moving to the left at t = 0, it is in the 
upper half of the circular-motion diagram and must have a phase 
constant between 0 and p rad. Thus f0 is 2

3 p rad. The angular 
frequency is

 v =
2p

T
=

2p

0.80 s
= 7.85 rad/s

14.2 . Simple Harmonic Motion and Circular Motion    383
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384    c h a p t e r  14 . Oscillations

NOTE  The inverse-cosine function cos-1 is a two­valued function. Your calculator 
returns a single value, an angle between 0 rad and p rad. But the negative of this 
angle is also a solution. As Example 14.4 demonstrates, you must use additional 
information to choose between them. 

Stop to think 14.2  The figure shows 
four oscillators at t = 0. Which one 
has the phase constant f0 =  p/4 rad?

14.3 Energy in Simple Harmonic Motion
We’ve begun to develop the mathematical language of simple harmonic motion, but 
thus far we haven’t included any physics. We’ve made no mention of the mass of 
the object or the spring constant of the spring. An energy analysis, using the tools of 
Chapters 10 and 11, is a good starting place.

FiguRE 14.10a shows an object oscillating on a spring, our prototype of simple 
harmonic motion. Now we’ll specify that the object has mass m, the spring has 
spring constant k, and the motion takes place on a frictionless surface. You learned 
in Chapter 10 that the elastic potential energy when the object is at position x is 
Us =

1
2 k(�x)2, where �x = x - xe is the displacement from the equilibrium position 

xe. In this chapter we’ll always use a coordinate system in which xe = 0, making 
�x = x. There’s no chance for confusion with gravitational potential energy, so we 
can omit the subscript s and write the elastic potential energy as

 U =
1

2
 kx2 (14.17)

Thus the mechanical energy of an object oscillating on a spring is

 E = K + U =
1

2
 mv 2 +

1

2
 kx2 (14.18)

FiguRE 14.10b is an energy diagram, showing the potential-energy curve U =
1
2 kx2 as 

a parabola. Recall that a particle oscillates between the turning points where the total 
energy line E crosses the potential-energy curve. The left turning point is at x = -A, 
and the right turning point is at x = +A. To go beyond these points would require a 
negative kinetic energy, which is physically impossible.

You can see that the particle has purely potential energy at x � tA and pure-
ly kinetic energy as it passes through the equilibrium point at x � 0. At maximum 
displacement, with x = {A and v = 0, the energy is

 E(at x = {A) = U =
1

2
 kA2 (14.19)

At x = 0, where v = {vmax, the energy is

 E(at x = 0) = K =
1

2
 m (vmax)

2 (14.20)

(a)

(b)

(c)

(d)

x (mm)
�100 �71 100710

�A A

(a)

(b)

x
�A Ax0

x
�A A0

Energy
Potential-
energy
curve

Turning
point

Turning
point

Total
energy
line

E

mk

Energy is transformed between
kinetic and potential, but the total
mechanical energy E doesn’t change.

Energy here is
purely kinetic.

Energy here is purely potential.

E �   mv2 �   kx21
2

1
2

rv

FiguRE 14.10 The energy is transformed 
between kinetic energy and potential 
energy as the object oscillates, but the 
mechanical energy E = K + U  doesn’t 
change.
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The system’s mechanical energy is conserved because the surface is frictionless 
and there are no external forces, so the energy at maximum displacement and the en-
ergy at maximum speed, Equations 14.19 and 14.20, must be equal. That is

 
1

2
 m(vmax)

2 =
1

2
 kA2 (14.21)

Thus the maximum speed is related to the amplitude by

 vmax = A k
m

 A (14.22)

This is a relationship based on the physics of the situation.
Earlier, using kinematics, we found that

 vmax =
2pA

T
= 2pfA = vA (14.23)

Comparing Equations 14.22 and 14.23, we see that frequency and period of an oscil-
lating spring are determined by the spring constant k and the object’s mass m:

 v = A k
m
  f =

1

2p
 A k

m
  T = 2p Am

k
 (14.24)

These three expressions are really only one equation. They say the same thing, but 
each expresses it in slightly different terms.

Equations 14.24 are the answer to the second question we posed at the beginning of 
the chapter, where we asked how the period and frequency are related to the object’s 
mass m, the spring constant k, and the amplitude A. It is perhaps surprising, but the 
period and frequency do not depend on the amplitude A. A small oscillation and a 
large oscillation have the same period.

Because energy is conserved, we can combine Equations 14.18, 14.19, and 14.20 
to write

E =
1

2
 mv 2 +

1

2
 kx2 =

1

2
 kA2 =

1

2
 m(vmax)

2 (conservation of energy) (14.25)

Any pair of these expressions may be useful, depending on the known information. 
For example, you can use the amplitude A to find the speed at any point x by combin-
ing the first and second expressions for E. The speed v at position x is

 v = B k
m

 (A2 - x2) = v 2A2 - x2 (14.26)

FiguRE 14.11 shows graphically how the kinetic and potential energy change with 
time. They both oscillate but remain positive because x and v are squared. Energy is 
continuously being transformed back and forth between the kinetic energy of the mov-
ing block and the stored potential energy of the spring, but their sum remains constant. 
Notice that K and U both oscillate twice each period; make sure you understand why.

The total mechanical
energy E is constant.

Kinetic energy

Potential energy

t

Energy

T

t

Position

0

0

FiguRE 14.11 Kinetic energy, potential 
energy, and the total mechanical energy 
for simple harmonic motion.

where we used k/m = v2 from Equation 14.24. The angular fre-
quency is easily found from the period: v = 2p/T = 7.85 rad/s. 
Thus

 x = B (0.20 m)2 - 1 1.0 m/s

7.85 rad/s 2 2

= {0.15 m = {15 cm

There are two positions because the block has this speed on 
either side of equilibrium.

 b. Although part a did not require that we know the spring con-
stant, it is straightforward to find from Equation 14.24:

 T = 2pAm

k

 k =
4p2 m

T 2 =
4p2 (0.50 kg)

(0.80 s)2 = 31 N/m

ExAMPLE 14.5  using conservation of energy
A 500 g block on a spring is pulled a distance of 20 cm and released. 
The subsequent oscillations are measured to have a period of 0.80 s. 

a. At what position or positions is the block’s speed 1.0 m/s? 
b. What is the spring constant?

MODEL The motion is SHM. Energy is conserved.

SOLvE a. The block starts from the point of maximum displace-
ment, where E = U =

1
2 kA2. At a later time, when the position is 

x and the speed is v, energy conservation requires
1

2
 mv 2 +

1

2
 kx2 =

1

2
 kA2

Solving for x, we find

x = BA2 -
mv 2

k
= BA2 - 1 v

v 2 2
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Stop to think 14.3  
The four springs shown here have been com-
pressed from their equilibrium position at 
x = 0 cm. When released, the attached mass 
will start to oscillate. Rank in order, from 
highest to lowest, the maximum speeds of 
the masses.

14.4  The Dynamics of Simple 
Harmonic Motion

Our analysis thus far has been based on the experimental observation that the oscilla-
tion of a spring “looks” sinusoidal. It’s time to show that Newton’s second law predicts 
sinusoidal motion.

A motion diagram will help us visualize the object’s acceleration. FiguRE 14.12 shows 
one cycle of the motion, separating motion to the left and motion to the right to make 
the diagram clear. As you can see, the object’s velocity is large as it passes through the 
equilibrium point at x = 0, but v  

u
 is not changing at that point. Acceleration measures 

the change of the velocity; hence a
u
= 0

u

 at x = 0.

(a)

(b)

(c)

(d)

x (cm)
�20 �15 �10 �5 0

4m

4m

2m

m

k1
2

k

k

k

ar

ar

ar

rv

rv

ar

ar
a � 0

rr

a � 0
rr

ar

rv

rv

x
02A A

To the right

Same
point

Same
pointEquilibrium

To the left

FiguRE 14.12 Motion diagram of simple harmonic motion. The left and right motions are 
separated vertically for clarity but really occur along the same line.

In contrast, the velocity is changing rapidly at the turning points. At the right turn-
ing point, v  

u
 changes from a right-pointing vector to a left-pointing vector. Thus the 

acceleration a
u

 at the right turning point is large and to the left. In one-dimensional 
motion, the acceleration component ax has a large negative value at the right turning 
point. Similarly, the acceleration a

u
 at the left turning point is large and to the right. 

Consequently, ax has a large positive value at the left turning point.
Our motion-diagram analysis suggests that the acceleration ax is most positive 

when the displacement is most negative, most negative when the displacement is a 
maximum, and zero when x = 0. This is confirmed by taking the derivative of the 
velocity:

 ax =
dvx

dt
=

d

dt
(-vA sin vt) = -v2A cos vt (14.27)

then graphing it.
FiguRE 14.13 shows the position graph that we started with in Figure 14.4 and the cor-

responding acceleration graph. Comparing the two, you can see that the acceleration 

t

Acceleration ax

0
T 2T

�amax

amax

t

Position x

0
T 2T

�A

A

amin � �v2A when x � �A

amax � v2A when x � �A

T

FiguRE 14.13 Position and acceleration 
graphs for an oscillating spring. We’ve 
chosen f0 = 0.
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graph looks like an upside-down position graph. In fact, because x = A cos vt, Equa-
tion 14.27 for the acceleration can be written

 ax = -v2x (14.28)

That is, the acceleration is proportional to the negative of the displacement. The 
acceleration is, indeed, most positive when the displacement is most negative and is 
most negative when the displacement is most positive.

Recall that the acceleration is related to the net force by Newton’s second law. Con-
sider again our prototype mass on a spring, shown in FiguRE 14.14. This is the simplest 
possible oscillation, with no distractions due to friction or gravitational forces. We will 
assume the spring itself to be massless.

As you learned in Chapter 10, the spring force is given by Hooke’s law:

 (Fsp)x = -k �x (14.29)

The minus sign indicates that the spring force is a restoring force, a force that al-
ways points back toward the equilibrium position. If we place the origin of the coor-
dinate system at the equilibrium position, as we’ve done throughout this chapter, then 
�x = x and Hooke’s law is simply (Fsp)x = -kx.

The x-component of Newton’s second law for the object attached to the spring is

 (Fnet)x = (Fsp)x = -kx = max (14.30)

Equation 14.30 is easily rearranged to read

 ax = -  
k
m

 x (14.31)

You can see that Equation 14.31 is identical to Equation 14.28 if the system oscillates 
with angular frequency v = 1k/m . We previously found this expression for v from 
an energy analysis. Our experimental observation that the acceleration is proportional 
to the negative of the displacement is exactly what Hooke’s law would lead us to ex-
pect. That’s the good news.

The bad news is that ax is not a constant. As the object’s position changes, so does 
the acceleration. Nearly all of our kinematic tools have been based on constant ac-
celeration. We can’t use those tools to analyze oscillations, so we must go back to the 
very definition of acceleration:

 ax =
dvx

dt
=

d 2x

dt2

Acceleration is the second derivative of position with respect to time. If we use this 
definition in Equation 14.31, it becomes

 
d 2x

dt2 = -  
k
m

 x (equation of motion for a mass on a spring) (14.32)

Equation 14.32, which is called the equation of motion, is a second-order differential 
equation. Unlike other equations we’ve dealt with, Equation 14.32 cannot be solved 
by direct integration. We’ll need to take a different approach.

Solving the Equation of Motion
The solution to an algebraic equation such as x2 = 4 is a number. The solution to a 
differential equation is a function. The x in Equation 14.32 is really x(t), the position 
as a function of time. The solution to this equation is a function x(t) whose second 
derivative is the function itself multiplied by (-k/m).

One important property of differential equations that you will learn about in math 
is that the solutions are unique. That is, there is only one solution to Equation 14.32 
that satisfies the initial conditions. If we were able to guess a solution, the uniqueness 
property would tell us that we had found the only solution. That might seem a rather 

Spring
constant k

Oscillation

m

x
0 x2A A

Fsp

r

FiguRE 14.14 The prototype of simple 
harmonic motion: a mass oscillating on 
a horizontal spring without friction.
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388    c h a p t e r  14 . Oscillations

strange way to solve equations, but in fact differential equations are frequently solved 
by using your knowledge of what the solution needs to look like to guess an appropri-
ate function. Let us give it a try!

We know from experimental evidence that the oscillatory motion of a spring ap-
pears to be sinusoidal. Let us guess that the solution to Equation 14.32 should have 
the functional form

 x(t) = A cos(vt + f0) (14.33)

where A, v, and f0 are unspecified constants that we can adjust to any values that 
might be necessary to satisfy the differential equation.

If you were to guess that a solution to the algebraic equation x2 = 4 is x = 2, you 
would verify your guess by substituting it into the original equation to see if it works. 
We need to do the same thing here: Substitute our guess for x(t) into Equation 14.32 
to see if, for an appropriate choice of the three constants, it works. To do so, we need 
the second derivative of x(t). That is straightforward:

 x(t) = A cos(vt + f0)

 
dx

dt
= -vA sin(vt + f0)  (14.34)

 
d 2x

dt2 = -v2A cos(vt + f0)

If we now substitute the first and third of Equations 14.34 into Equation 14.32, we find

 -v2A cos(vt + f0) = -  
k
m

 A cos(vt + f0) (14.35)

Equation 14.35 will be true at all instants of time if and only if v2 = k/m. There do not 
seem to be any restrictions on the two constants A and f0—they are determined by the 
initial conditions.

So we have found—by guessing!—that the solution to the equation of motion for a 
mass oscillating on a spring is

 x(t) = A cos(vt + f0) (14.36)

where the angular frequency

 v = 2pf = B k
m

 (14.37)

is determined by the mass and the spring constant.

NOTE  Once again we see that the oscillation frequency is independent of the 
amplitude A. 

Equations 14.36 and 14.37 seem somewhat anticlimactic because we’ve been  
using these results for the last several pages. But keep in mind that we had been 
assuming x = A cos vt simply because the experimental observations “looked” like a 
cosine function. We’ve now justified that assumption by showing that Equation 14.36 
really is the solution to Newton’s second law for a mass on a spring. The theory of 
oscillation, based on Hooke’s law for a spring and Newton’s second law, is in good 
agreement with the experimental observations. This conclusion gives an affirmative 
answer to the last of the three questions that we asked early in the chapter, which was 
whether the sinusoidal oscillation of SHM is a consequence of Newton’s laws.

An optical technique called  
interferometry reveals the bell­like 
vibrations of a wine glass.

 a. Draw a position-versus-time graph for one cycle of the motion.
 b. At what times during the first cycle does the mass pass through 

x = 20 cm?

ExAMPLE 14.6  Analyzing an oscillator
At t = 0 s, a 500 g block oscillating on a spring is observed mov-
ing to the right at x = 15 cm. It reaches a maximum displacement 
of 25 cm at t = 0.30 s.
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Stop to think 14.4  This is the position graph of a mass on a spring. What can you 
say about the velocity and the force at the instant indicated by the dashed line?

 a. Velocity is positive; force is to the right.
 b. Velocity is negative; force is to the right.
 c. Velocity is zero; force is to the right.
 d. Velocity is positive; force is to the left.
 e. Velocity is negative; force is to the left.
 f. Velocity is zero; force is to the left.
 g. Velocity and force are both zero.

MODEL The motion is simple harmonic motion.

SOLvE a. The position equation of the block is x (t) = A cos(vt +  
f0). We know that the amplitude is A = 0.25 m and that 
x0 = 0.15 m. From these two pieces of information we obtain 
the phase constant:

 f0 =  cos-11x0

A 2 =  cos-1 (0.60) = {0.927 rad

The object is initially moving to the right, which tells us that 
the phase constant must be between -p and 0 rad. Thus f0 =
-0.927 rad. The block reaches its maximum displacement 
xmax = A at time t = 0.30 s. At that instant of time

 xmax = A = A cos(vt + f0)

This can be true only if  cos(vt + f0) = 1, which requires 
vt + f0 = 0. Thus

 v =
-f0

t
=

- (-0.927 rad)

0.30 s
= 3.09 rad/s

Now that we know v, it is straightforward to compute the 
period:

 T =
2p
v

= 2.0 s

FiguRE 14.15 graphs x (t) = (25 cm) cos(3.09t - 0.927), where 
t is in s, from t = 0 s to t = 2.0 s.

 b. From x = A cos(vt + f0), the time at which the mass reaches 
position x = 20 cm is

  t =
1
v

 1cos-11 x

A 2 - f02
 =

1

3.09 rad/s1cos-1120 cm

25 cm 2 + 0.927 rad2 = 0.51 s

A calculator returns only one value of cos-1, in the range 0 to 
p rad, but we noted earlier that cos-1 actually has two values. 
Indeed, you can see in Figure 14.15 that there are two times at 
which the mass passes x = 20 cm. Because they are symmetri-
cal on either side of t = 0.30 s, when x = A, the first point is 
(0.51 s - 0.30 s) = 0.21 s before the maximum. Thus the mass 
passes through x = 20 cm at t = 0.09 s and again at t = 0.51 s.

t (s)

x (cm)

0.50.3 1.0 1.5 2.0

25
20
15
10
5
0

�5
�10
�15
�20
�25

T � 2.0 s

FiguRE 14.15 Position­versus­time graph 
for the oscillator of Example 14.6.

t

x

0

�A

A

14.5 vertical Oscillations
We have focused our analysis on a horizontally oscillating spring. But the typical 
demonstration you’ll see in class is a mass bobbing up and down on a spring hung 
vertically from a support. Is it safe to assume that a vertical oscillation has the same 
mathematical description as a horizontal oscillation? Or does the additional force of 
gravity change the motion? Let us look at this more carefully.

FiguRE 14.16 shows a block of mass m hanging from a spring of spring constant k. An 
important fact to notice is that the equilibrium position of the block is not where the 
spring is at its unstretched length. At the equilibrium position of the block, where it 
hangs motionless, the spring has stretched by �L.

Finding �L is a static-equilibrium problem in which the upward spring force bal-
ances the downward gravitational force on the block. The y-component of the spring 
force is given by Hooke’s law:

 (Fsp)y = -k �y = +k �L (14.38)

Unstretched
spring

�L

k

m

The block hanging
at rest has stretched
the spring by �L.

Fsp

r

FG

r

FiguRE 14.16 Gravity stretches the 
spring.
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Equation 14.38 makes a distinction between �L, which is simply a distance and is 
a positive number, and the displacement �y. The block is displaced downward, so 
�y = -�L. Newton’s first law for the block in equilibrium is

 (Fnet)y = (Fsp)y + (FG)y = k �L - mg = 0 (14.39)

from which we can find

 �L =
mg

k
 (14.40)

This is the distance the spring stretches when the block is attached to it.
Let the block oscillate around this equilibrium position, as shown in FiguRE 14.17. 

We’ve now placed the origin of the y-axis at the block’s equilibrium position in order to 
be consistent with our analyses of oscillations throughout this chapter. If the block moves 
upward, as the figure shows, the spring gets shorter compared to its equilibrium length, 
but the spring is still stretched compared to its unstretched length in Figure 14.16. When 
the block is at position y, the spring is stretched by an amount �L - y and hence exerts 
an upward spring force Fsp = k(�L - y). The net force on the block at this point is

(Fnet)y = (Fsp)y + (FG)y = k(�L - y) - mg = (k �L - mg) - ky (14.41)

But k �L - mg is zero, from Equation 14.40, so the net force on the block is simply

 (Fnet)y = -ky (14.42)

Equation 14.42 for vertical oscillations is exactly the same as Equation 14.30 for 
horizontal oscillations, where we found (Fnet)x = -kx. That is, the restoring force for 
vertical oscillations is identical to the restoring force for horizontal oscillations. The 
role of gravity is to determine where the equilibrium position is, but it doesn’t affect 
the oscillatory motion around the equilibrium position.

Because the net force is the same, Newton’s second law has exactly the same oscil-
latory solution:

 y(t) = A cos(vt + f0) (14.43)

with, again, v = 2k/m. The vertical oscillations of a mass on a spring are the 
same simple harmonic motion as those of a block on a horizontal spring. This is 
an important finding because it was not obvious that the motion would still be simple 
harmonic motion when gravity was included.

FG

r

Block’s
equilibrium
position

0

y

�A

A

m

m

Spring
stretched
by �L � y

Spring
stretched
by �L

Oscillation around the 
equilibrium position 
is symmetrical.

Fsp

r

Fnet

r

FiguRE 14.17 The block oscillates around 
the equilibrium position.

cord’s original end point. The student’s position as a function of 
time, as measured from the equilibrium position, is

 y (t) = (2.0 m) cos(vt + f0)

ExAMPLE 14.7  Bungee oscillations
An 83 kg student hangs from a bungee cord with spring constant 
270 N/m. The student is pulled down to a point where the cord is 
5.0 m longer than its unstretched length, then released. Where is 
the student, and what is his velocity 2.0 s later?

MODEL A bungee cord can be modeled as a spring. Vertical oscil-
lations on the bungee cord are SHM.

viSuALizE FiguRE 14.18 shows the situation.

SOLvE Although the cord is stretched by 5.0 m when the student 
is released, this is not the amplitude of the oscillation. Oscilla-
tions occur around the equilibrium position, so we have to begin 
by finding the equilibrium point where the student hangs motion-
less. The cord stretch at equilibrium is given by Equation 14.40:

 �L =
mg

k
= 3.0 m

Stretching the cord 5.0 m pulls the student 2.0 m below the equi-
librium point, so A = 2.0 m. That is, the student oscillates with 
amplitude A = 2.0 m about a point 3.0 m beneath the bungee 

The bungee cord is 
modeled as a spring.

FiguRE 14.18 A student on a bungee cord oscillates 
about the equilibrium position.
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14.6 The Pendulum
Now let’s look at another very common oscillator: a pendulum. FiguRE 14.19a shows a 
mass m attached to a string of length L and free to swing back and forth. The pendu-
lum’s position can be described by the arc of length s, which is zero when the pendu-
lum hangs straight down. Because angles are measured ccw, s and u are positive when 
the pendulum is to the right of center, negative when it is to the left.

Two forces are acting on the mass: the string tension T 
u

 and gravity F
u

G. It will be 
convenient to repeat what we did in our study of circular motion: Divide the forces 
into tangential components, parallel to the motion, and radial components parallel to 
the string. These are shown on the free-body diagram of FiguRE 14.19b.

Newton’s second law for the tangential component, parallel to the motion, is

 (Fnet)t = aFt = (FG)t = -mg sin u = mat (14.44)

Using at = d 2s/dt 2 for acceleration “around” the circle, and noting that the mass can-
cels, we can write Equation 14.44 as

 
d 2s

dt2 = -g sin u (14.45)

This is the equation of motion for an oscillating pendulum. The sine function makes 
this equation more complicated than the equation of motion for an oscillating 
spring.

The Small-Angle Approximation
Suppose we restrict the pendulum’s oscillations to small angles of less than about 
10�. This restriction allows us to make use of an interesting and important piece of 
geometry.

FiguRE 14.20 shows an angle u and a circular arc of length s = r u. A right triangle 
has been constructed by dropping a perpendicular from the top of the arc to the axis. 
The height of the triangle is h = r sin u. Suppose that the angle u is “small.” In that 
case there is very little difference between h and s. If h � s, then r sin u � r u. It fol-
lows that

 sin u � u (u in radians)

The result that sin u � u for small angles is called the small-angle approximation. 
We can similarly note that l � r for small angles. Because l = r cos u, it follows that 
cos u � 1. Finally, we can take the ratio of sine and cosine to find tan u �  sin u � u. 
Table 14.3 summarizes the small-angle approximation. We will have other occasions 
to use the small-angle approximation throughout the remainder of this text.

NOTE  The small-angle approximation is valid only if angle u is in radians! 

How small does u have to be to justify using the small-angle approximation? It’s 
easy to use your calculator to find that the small-angle approximation is good to three 

where v = 2k/m = 1.80 rad/s. The initial condition

 y0 = A cos f0 = -A

requires the phase constant to be f0 = p rad. At t = 2.0 s the stu-
dent’s position and velocity are

 y = (2.0 m) cos1 (1.80 rad/s) (2.0 s) + p rad2 = 1.8 m

 vy = -vA sin(vt + f0) = -1.6 m/s

The student is 1.8 m above the equilibrium position, or 1.2m be­
low the original end of the cord. Because his velocity is negative, 
he’s passed through the highest point and is heading down.

0

u and s are
negative on
the left.

u and s are
positive on
the right.

Arc length

L

s
m

(a)

u

Center 
of circle

Tangential
axis

t

The tension has
only a radial
component.

The gravitational force
has a tangential 
component �mg sin u.

(b)

u

u

(FG)t

(FG)r

r
T

FG

r

FiguRE 14.19 The motion of a 
pendulum.

s � ruh � r sin u

l � r cos u

r

u

FiguRE 14.20 The geometrical basis of 
the small­angle approximation.

TABLE 14.3 Small­angle approximations. 
u must be in radians.

sin u � u tan u �  sin u � u

cos u � 1
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392    c h a p t e r  14 . Oscillations

significant figures, an error of …  0.1%, up to angles of �  0.10 rad ( �  5�). In practice, 
we will use the approximation up to about 10�, but for angles any larger it rapidly loses 
validity and produces unacceptable results.

If we restrict the pendulum to u 6 10�, we can use sin u � u. In that case, Equa-
tion 14.44 for the net force on the mass is

 (Fnet)t = -mg sin u � -mgu = -
mg

L
 s

where, in the last step, we used the fact that angle u is related to the arc length by  
u = s/L. Then the equation of motion becomes 

 
d 2s

dt2 = -  
g

L
 s (14.46)

This is exactly the same as Equation 14.32 for a mass oscillating on a spring. The 
names are different, with x replaced by s and k/m by g/L, but that does not make it a 
different equation.

Because we know the solution to the spring problem, we can immediately write the 
solution to the pendulum problem just by changing variables and constants:

 s (t) = A cos(vt + f0)  or  u (t) = umax cos(vt + f0) (14.47)

The angular frequency

 v = 2pf = A g

L
 (14.48)

is determined by the length of the string. The pendulum is interesting in that the fre-
quency, and hence the period, is independent of the mass. It depends only on the 
length of the pendulum. The amplitude A and the phase constant f0 are determined by 
the initial conditions, just as they were for an oscillating spring.

The pendulum clock has been used 
for hundreds of years.

The speed at the lowest point is vmax = vA, so the amplitude is

 A = smax =
vmax

v
=

0.25 m/s

5.72 rad/s
= 0.0437 m

The maximum angle, at the maximum arc length smax, is

 umax =
smax 

L
=

0.0437 m

0.30 m
= 0.146 rad = 8.3�

ASSESS Because the maximum angle is less than 10�, our analysis 
based on the small-angle approximation is reasonable.

ExAMPLE 14.8  The maximum angle of a pendulum
A 300 g mass on a 30-cm-long string oscillates as a pendulum. It 
has a speed of 0.25 m/s as it passes through the lowest point. What 
maximum angle does the pendulum reach?

MODEL Assume that the angle remains small, in which case the 
motion is simple harmonic motion.

SOLvE The angular frequency of the pendulum is

 v = B g

L
= B 9.8 m/s2

0.30 m
 = 5.72 rad/s

Length (m) Time (s)

0.500 141.7

1.000 200.6

1.500 245.8

2.000 283.5

What is the local value of g?

ExAMPLE 14.9  The gravimeter
Deposits of minerals and ore can alter the local value of the free-
fall acceleration because they tend to be denser than surrounding 
rocks. Geologists use a gravimeter—an instrument that accurately 
measures the local free-fall acceleration—to search for ore depos-
its. One of the simplest gravimeters is a pendulum. To achieve 
the highest accuracy, a stopwatch is used to time 100 oscillations 
of a pendulum of different lengths. At one location in the field, a 
geologist makes the following measurements:
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The Conditions for Simple Harmonic Motion
You can begin to see how, in a sense, we have solved all simple-harmonic-motion 
problems once we have solved the problem of the horizontal spring. The restoring 
force of a spring, Fsp = -kx, is directly proportional to the displacement x from equi-
librium. The pendulum’s restoring force, in the small-angle approximation, is directly 
proportional to the displacement s. A restoring force that is directly proportional to the 
displacement from equilibrium is called a linear restoring force. For any linear restor-
ing force, the equation of motion is identical to the spring equation (other than perhaps 
using different symbols). Consequently, any system with a linear restoring force will 
undergo simple harmonic motion around the equilibrium position.

This is why an oscillating spring is the prototype of SHM. Everything that we learn 
about an oscillating spring can be applied to the oscillations of any other linear restor-
ing force, ranging from the vibration of airplane wings to the motion of electrons in 
electric circuits. Let’s summarize this information with a Tactics Box.

case, we would have had to conclude either that our model of the 
pendulum as a simple, small-angle pendulum was not valid or that 
our measurements were bad. This is an important reason for hav-
ing multiple data points rather than using only one length.

Best-fit line

y � 4.021x � 0.001

2

0

4

6

8

T 2 (s2)

L (m)
0.50.0 1.0 1.5 2.0

FiguRE 14.21 Graph of the square of the pendulum’s 
period versus its length.

TACTiCS
B O x  1 4 . 1 

 identifying and analyzing simple harmonic motion

 ●1 If the net force acting on a particle is a linear restoring force, the motion will 
be simple harmonic motion around the equilibrium position.

 ●2 The position as a function of time is x(t) = A cos(vt + f0). The velocity 
as a function of time is vx(t) = -vA sin(vt + f0). The maximum speed is 
vmax = vA. The equations are given here in terms of x, but they can be written 
in terms of y, u, or some other parameter if the situation calls for it.

 ●3 The amplitude A and the phase constant f0 are determined by the initial con-
ditions through x0 = A cos f0 and v0x = -vA sin f0.

 ●4 The angular frequency v (and hence the period T = 2p/v)  depends on the 
physics of the particular situation. But v does not depend on A or f0.

 ●5 Mechanical energy is conserved. Thus 1
2 mvx 

2 +
1
2 kx2 =

1
2 kA2 =

1
2 m(vmax)2. 

Energy conservation provides a relationship between position and velocity 
that is independent of time.

Exercises 7–12, 15–19 

MODEL Assume the oscillation angle is small, in which case the 
motion is simple harmonic motion with a period independent of 
the mass of the pendulum. Because the data are known to four sig-
nificant figures ({1 mm on the length and {0.1 s on the timing, 
both of which are easily achievable), we expect to determine g to 
four significant figures.

SOLvE From Equation 14.48, using f = 1/T, we find

 T 2 = 12pAL

g 2 2

=
4p2

g
 L

That is, the square of a pendulum’s period is proportional to its 
length. Consequently, a graph of T 2 versus L should be a straight line 
passing through the origin with slope 4p2 /g. We can use the experi-
mentally measured slope to determine g. FiguRE 14.21 is a graph of 
the data, with the period found by dividing the measured time by 100.

As expected, the graph is a straight line passing through the 
origin. The slope of the best-fit line is 4.021 s2/m. Consequently,

 g =
4p2

slope
=

4p2

4.021 s2/m
= 9.818 m/s2

ASSESS The fact that the graph is linear and passes through the 
origin confirms our model of the situation. Had this not been the 
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The Physical Pendulum
A mass on a string is often called a simple pendulum. But you can also make a pendu-
lum from any solid object that swings back and forth on a pivot under the influence of 
gravity. This is called a physical pendulum.

FiguRE 14.22 shows a physical pendulum of mass M for which the distance between 
the pivot and the center of mass is l. The moment arm of the gravitational force acting 
at the center of mass is d = l sin u, so the gravitational torque is

 t = -Mgd = -Mgl sin u

The torque is negative because, for positive u, it’s causing a clockwise rotation. If we 
restrict the angle to being small (u 6 10�), as we did for the simple pendulum, we can 
use the small-angle approximation to write

 t = -Mglu (14.49)

Gravity causes a linear restoring torque on the pendulum—that is, the torque is direct-
ly proportional to the angular displacement u—so we expect the physical pendulum 
to undergo SHM.

From Chapter 12, Newton’s second law for rotational motion is

 a =
d 2u

dt2 =
t

I

where I is the object’s moment of inertia about the pivot point. Using Equation 14.49 
for the torque, we find

 
d 2u

dt2 =
-Mgl

I
 u (14.50)

Comparison with Equation 14.32 shows that this is again the SHM equation of motion, 
this time with angular frequency

 v = 2pf = BMgl

I
 (14.51)

It appears that the frequency depends on the mass of the pendulum, but recall that 
the moment of inertia is directly proportional to M. Thus M cancels and the frequency 
of a physical pendulum, like that of a simple pendulum, is independent of mass.

Mg

d

l

u
�

Distance from
pivot to center of
mass

Moment arm of
gravitational torque

FiguRE 14.22 A physical pendulum.

The corresponding period is T = 1/f = 1.6 s. Notice that we didn’t 
need to know the mass.

ASSESS As you walk, your legs do swing as physical pendulums 
as you bring them forward. The frequency is fixed by the length 
of your legs and their distribution of mass; it doesn’t depend on 
amplitude. Consequently, you don’t increase your walking speed 
by taking more rapid steps—changing the frequency is difficult. 
You simply take longer strides, changing the amplitude but not 
the frequency.

ExAMPLE 14.10  A swinging leg as a pendulum
A student in a biomechanics lab measures the length of his leg, 
from hip to heel, to be 0.90 m. What is the frequency of the pendu-
lum motion of the student’s leg? What is the period?

MODEL We can model a human leg reasonably well as a rod of 
uniform cross section, pivoted at one end (the hip) to form a physi-
cal pendulum. The center of mass of a uniform leg is at the mid-
point, so l = L/2.

SOLvE The moment of inertia of a rod pivoted about one end is 
I = 1

3 ML2, so the pendulum frequency is

 f =
1

2p
 BMgl

I
=

1

2p
 BMg(L/2)

ML2/3
=

1

2p
 B 3g

2L
= 0.64 Hz

Stop to think 14.5  One person swings on a swing and finds that the period is 3.0 s. A 
second person of equal mass joins him. With two people swinging, the period is

 a. 6.0 s b. 73.0 s but not necessarily 6.0 s
 c. 3.0 s d. 63.0 s but not necessarily 1.5 s
 e. 1.5 s f. Can’t tell without knowing the length
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14.7 Damped Oscillations
A pendulum left to itself gradually slows down and stops. The sound of a ringing bell 
gradually dies away. All real oscillators do run down—some very slowly but others 
quite quickly—as friction or other dissipative forces transform their mechanical en-
ergy into the thermal energy of the oscillator and its environment. An oscillation that 
runs down and stops is called a damped oscillation.

There are many possible reasons for the dissipation of energy, such as air resis-
tance, friction, and internal forces within a metal spring as it flexes. The forces in-
volved in dissipation are complex, but a simple linear drag model gives a quite ac-
curate description of most damped oscillations. That is, we’ll assume a drag force that 
depends linearly on the velocity as

 D
u

= -bv  

u
 (model of the drag force) (14.52)

where the minus sign is the mathematical statement that the force is always opposite 
in direction to the velocity in order to slow the object.

The damping constant b depends in a complicated way on the shape of the object 
and on the viscosity of the air or other medium in which the particle moves. The damp-
ing constant plays the same role in our model of air resistance that the coefficient of 
friction does in our model of friction.

The units of b need to be such that they will give units of force when multiplied by 
units of velocity. As you can confirm, these units are kg/s. A value b = 0 kg/s cor-
responds to the limiting case of no resistance, in which case the mechanical energy 
is conserved. A typical value of b for a spring or a pendulum in air is …0.10 kg/s. 
Objects moving in a liquid can have significantly larger values of b.

FiguRE 14.23 shows a mass oscillating on a spring in the presence of a drag force. 
With the drag included, Newton’s second law is

 (Fnet)x = (Fsp)x + Dx = -kx - bvx = max (14.53)

Using vx = dx/dt and ax = d 2x/dt2, we can write Equation 14.53 as

 
d 2x

dt2 +
b
m

 
dx

dt
+

k
m

 x = 0 (14.54)

Equation 14.54 is the equation of motion of a damped oscillator. If you compare it to 
Equation 14.32, the equation of motion for a block on a frictionless surface, you’ll see 
that it differs by the inclusion of the term involving dx/dt.

Equation 14.54 is another second-order differential equation. We will simply assert 
(and, as a homework problem, you can confirm) that the solution is

 x(t) = Ae-bt/2m cos(vt + f0)  (damped oscillator) (14.55)

where the angular frequency is given by

 v = B k
m

-
b2

4m2 = Bv0 

2 -
b2

4m2 (14.56)

Here v0 = 2k/m is the angular frequency of an undamped oscillator (b = 0). The 
constant e is the base of natural logarithms, so e-bt/2m is an exponential function.

Because e0 = 1, Equation 14.55 reduces to our previous solution, x(t) = A cos(vt +  
f0), when b = 0. This makes sense and gives us confidence in Equation 14.55. A 
lightly damped system, which oscillates many times before stopping, is one for which 
b/2m V v0. In that case, v � v0 is a good approximation. That is, light damping 
does not affect the oscillation frequency.

FiguRE 14.24 is a graph of the position x(t) for a lightly damped oscillator, as given 
by Equation 14.55. Notice that the term Ae-bt/2m, which is shown by the dashed line, 

The shock absorbers in cars and trucks 
are heavily damped springs. The vehicle’s 
vertical motion, after hitting a rock or a 
pothole, is a damped oscillation.

Spring
constant k

m
rv

Fsp

r

r
D

FiguRE 14.23 An oscillating mass in the 
presence of a drag force.

t

x

0

�A

A

A is the initial amplitude.

The envelope of the
amplitude decays
exponentially:
xmax � Ae�bt/2m

FiguRE 14.24 Position­versus­time graph 
for a damped oscillator.
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396    c h a p t e r  14 . Oscillations

acts as a slowly varying amplitude:

 xmax(t) = Ae-bt/2m (14.57)

where A is the initial amplitude, at t = 0. The oscillation keeps bumping up against 
this line, slowly dying out with time.

A slowly changing line that provides a border to a rapid oscillation is called the 
 envelope of the oscillations. In this case, the oscillations have an exponentially 
 decaying envelope. Make sure you study Figure 14.24 long enough to see how both 
the oscillations and the decaying amplitude are related to Equation 14.55.

Changing the amount of damping, by changing the value of b, affects how quickly 
the oscillations decay. FiguRE 14.25 shows just the envelope xmax(t) for several oscil-
lators that are identical except for the value of the damping constant b. (You need 
to imagine a rapid oscillation within each envelope, as in Figure 14.24.) Increasing 
b causes the oscillations to damp more quickly, while decreasing b makes them last 
longer.

t (s)

Amplitude

0

A

0 20 40 60

A larger b causes the oscillations
to damp more quickly.

A smaller b causes
less damping.

Envelope from Figure 14.24

Energy is conserved
if there is no damping.

For mass
m � 1.0 kg

b � 0 kg/s

b � 0.03 kg/s

b � 0.1 kg/s

b � 0.3 kg/s

FiguRE 14.25 Several oscillation 
envelopes, corresponding to different 
values of the damping constant b.

mathematical aside Exponential decay
Exponential decay occurs in a vast number of physical systems of 
importance in science and engineering. Mechanical vibrations, elec-
tric circuits, and nuclear radioactivity all exhibit exponential decay.

The number e = 2.71828 p  is the base of natural logarithms 
in the same way that 10 is the base of ordinary logarithms. It arises 
naturally in calculus from the integral

 3
du

u
= ln u

This integral—which shows up in the analysis of many physical 
systems—frequently leads to solutions of the form

 u = Ae-v/v0 = A exp(-v/v0)

where exp is the exponential function.

A graph of u illustrates what we mean by exponential decay. 
It starts with u = A at v = 0 (because e0 = 1)  and then steadily 
decays, asymptotically approaching zero. The quantity v0 is called 
the decay constant. When v = v0, u = e-1A = 0.37A. When 
v = 2v0, u = e-2A = 0.13A.

Arguments of functions must be pure numbers, without units. 
That is, we can evaluate e-2, but e-2 kg makes no sense. If v/v0 
is a pure number, which it must be, then the decay constant v0 
must have the same units as v. If v represents position, then v0 is a 
length; if v represents time, then v0 is a time interval. In a specific 
situation, v0 is often called the decay length or the decay time. It 
is the length or time in which the quantity decays to 37% of its 
initial value.

No matter what the process is or what u represents, a quan-
tity that decays exponentially decays to 37% of its initial value 
when one decay constant has passed. Thus exponential decay 
is a universal behavior. Every time you meet a new system that 
exhibits exponential decay, its behavior will be exactly the same 
as every other exponential decay. The decay curve always looks 
exactly like the figure shown here. Once you’ve learned the prop-
erties of exponential decay, you’ll immediately know how to ap-
ply this knowledge to a new situation.

0
0

u starts at A.

u decays to 37% of
its initial value at v � v0.

u decays to 13% of its
initial value at v � 2v0.

e�2A

e�1A

A

v0

v

u

2v0

Energy in Damped Systems
When considering the oscillator’s mechanical energy, it is useful to define the time 
constant t (also called the decay time) to be

 t =
m

b
 (14.58)

Because b has units of kg/s, t has units of seconds. With this definition, we can write 
the oscillation amplitude as xmax(t) = Ae-t/2t.
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Because of the drag force, the mechanical energy is no longer conserved. At any 
particular time we can compute the mechanical energy from

 E(t) =
1

2
 k(xmax)2 =

1

2
 k(Ae-t/2t)2 = 112 kA22e-t/t = E0e-t/t (14.59)

where E0 =
1
2 kA2 is the initial energy at t = 0 and where we used (zm)2 = z 2m. In other 

words, the oscillator’s mechanical energy decays exponentially with time constant T.
As FiguRE 14.26 shows, the time constant is the amount of time needed for the energy 

to decay to e-1, or 37%, of its initial value. We say that the time constant t mea-
sures the “characteristic time” during which the energy of the oscillation is dissipated. 
Roughly two-thirds of the initial energy is gone after one time constant has elapsed, 
and nearly 90% has dissipated after two time constants have gone by.

For practical purposes, we can speak of the time constant as the lifetime of the 
oscillation—about how long it lasts. Mathematically, there is never a time when the 
oscillation is “over.” The decay approaches zero asymptotically, but it never gets there 
in any finite time. The best we can do is define a characteristic time when the motion 
is “almost over,” and that is what the time constant t does.

t

Energy

t � t

0.13E0

0
0

0.37E0

E0

t � 2t

The oscillator starts
with energy E0.

The energy has decreased to 
37% of its initial value at t � t.

The energy has 
decreased to 13% 
of its initial value 
at t � 2t.

FiguRE 14.26 Exponential decay of the 
mechanical energy of an oscillator.

 b. The energy at time t is given by

 E (t) = E0e-t/t

The time at which an exponential decay is reduced to 12 E0, half 
its initial value, has a special name. It is called the half-life 
and given the symbol t1/2. The concept of the half-life is widely 
used in applications such as radioactive decay. To relate t1/2 to 
t, we first write

 E (at t = t1/2) =
1

2
 E0 = E0e-t1/2 /t

The E0 cancels, giving

 
1

2
= e-t1/2 /t

Again, we take the natural logarithm of both sides:

 ln112 2 = - ln 2 = ln e-t1/2 /t = - t1/2/t

Finally, we solve for t1/2:

 t1/2 = t ln 2 = 0.693t

This result that t1/2 is 69% of t is valid for any exponential 
decay. In this particular problem, half the energy is gone at

 t1/2 = (0.693) (25.2 s) = 17.5 s

ASSESS The oscillator loses energy faster than it loses amplitude. 
This is what we should expect because the energy depends on the 
square of the amplitude.

ExAMPLE 14.11  A damped pendulum
A 500 g mass swings on a 60-cm-string as a pendulum. The am-
plitude is observed to decay to half its initial value after 35.0 s.

 a. What is the time constant for this oscillator?
 b. At what time will the energy have decayed to half its initial 

value?

MODEL The motion is a damped oscillation.

SOLvE a. The initial amplitude at t = 0 is xmax = A. At t = 35.0 s 
the amplitude is xmax =

1
2 A. The amplitude of oscillation at 

time t is given by Equation 14.57:

 xmax(t) = Ae-bt/2m = Ae-t/2t

In this case,

 
1

2
 A = Ae-(35.0 s)/2t

Notice that we do not need to know A itself because it cancels 
out. To solve for t, we take the natural logarithm of both sides 
of the equation:

 ln112 2 = - ln 2 = ln e-(35.0 s)/2t = -  
35.0 s

2t
 

This is easily rearranged to give

 t =
35.0 s

2 ln 2
= 25.2 s

If desired, we could now determine the damping constant to be 
b = m/t = 0.020 kg/s.

Stop to think 14.6  Rank in order, from largest to smallest, the time constants ta to td 
of the decays shown in the figure. All the graphs have the same scale.

t

E

t

E

t

E

t

E

(a) (b) (c) (d)
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14.8 Driven Oscillations and Resonance
Thus far we have focused on the free oscillations of an isolated system. Some initial 
disturbance displaces the system from equilibrium, and it then oscillates freely until its 
energy is dissipated. These are very important situations, but they do not exhaust the 
possibilities. Another important situation is an oscillator that is subjected to a periodic 
external force. Its motion is called a driven oscillation.

A simple example of a driven oscillation is pushing a child on a swing, where your 
push is a periodic external force applied to the swing. A more complex example is a 
car driving over a series of equally spaced bumps. Each bump causes a periodic up-
ward force on the car’s shock absorbers, which are big, heavily damped springs. The 
electromagnetic coil on the back of a loudspeaker cone provides a periodic magnetic 
force to drive the cone back and forth, causing it to send out sound waves. Air turbu-
lence moving across the wings of an aircraft can exert periodic forces on the wings and 
other aerodynamic surfaces, causing them to vibrate if they are not properly designed.

As these examples suggest, driven oscillations have many important applications. 
However, driven oscillations are a mathematically complex subject. We will simply 
hint at some of the results, saving the details for more advanced classes.

Consider an oscillating system that, when left to itself, oscillates at a frequency f0. 
We will call this the natural frequency of the oscillator. The natural frequency for 
a mass on a spring is 1k/m /2p, but it might be given by some other expression for 
another type of oscillator. Regardless of the expression, f0 is simply the frequency of 
the system if it is displaced from equilibrium and released.

Suppose that this system is subjected to a periodic external force of frequency fext. 
This frequency, which is called the driving frequency, is completely independent 
of the oscillator’s natural frequency f0. Somebody or something in the environment 
selects the frequency fext of the external force, causing the force to push on the system 
fext times every second.

Although it is possible to solve Newton’s second law with an external driving 
force, we will be content to look at a graphical representation of the solution. The 
most important result is that the oscillation amplitude depends very sensitively on the 
frequency fext of the driving force. The response to the driving frequency is shown 
in FiguRE 14.27 for a system with m = 1.0 kg, a natural frequency f0 = 2.0 Hz, and a 
damping constant b = 0.20 kg/s. This graph of amplitude versus driving frequency, 
called the response curve, occurs in many different applications.

When the driving frequency is substantially different from the oscillator’s natural 
frequency, at the right and left edges of Figure 14.27, the system oscillates but the am-
plitude is very small. The system simply does not respond well to a driving frequency 
that differs much from f0. As the driving frequency gets closer and closer to the natural 
frequency, the amplitude of the oscillation rises dramatically. After all, f0 is the fre-
quency at which the system “wants” to oscillate, so it is quite happy to respond to a 
driving frequency near f0. Hence the amplitude reaches a maximum when the driving 
frequency exactly matches the system’s natural frequency: fext = f0.

The amplitude can become exceedingly large when the frequencies match, espe-
cially if the damping constant is very small. FiguRE 14.28 shows the same oscillator 
with three different values of the damping constant. There’s very little response if the 
damping constant is increased to 0.80 kg/s, but the amplitude for fext = f0 becomes 
very large when the damping constant is reduced to 0.08 kg/s. This large-amplitude 
response to a driving force whose frequency matches the natural frequency of the sys-
tem is a phenomenon called resonance. The condition for resonance is

 fext = f0 (resonance condition) (14.60)

Within the context of driven oscillations, the natural frequency f0 is often called the 
resonance frequency.

An important feature of Figure 14.28 is how the amplitude and width of the reso-
nance depend on the damping constant. A heavily damped system responds fairly 

fext (Hz)

Amplitude

1 2 3

The oscillation has
maximum amplitude
when fext � f0. This
is resonance.

The oscillation has 
only a small amplitude 
when fext differs 
substantially from f0.

This is the natural
frequency.

FiguRE 14.27 The response curve shows 
the amplitude of a driven oscillator at 
frequencies near its natural frequency 
of 2.0 Hz.

fext (Hz)

Amplitude

1 2 3

b � 0.08 kg/s

b � 0.20 kg/s

b � 0.80 kg/s

f0 � 2.0 Hz A lightly damped system
has a very tall and very
narrow response curve.

A heavily damped 
system has little 
response.

FiguRE 14.28 The resonance amplitude 
becomes higher and narrower as the 
damping constant decreases.
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little, even at resonance, but it responds to a wide range of driving frequencies. Very 
lightly damped systems can reach exceptionally high amplitudes, but notice that the 
range of frequencies to which the system responds becomes narrower and narrower 
as b decreases.

This allows us to understand why a few singers can break crystal goblets but not 
inexpensive, everyday glasses. An inexpensive glass gives a “thud” when tapped, but a 
fine crystal goblet “rings” for several seconds. In physics terms, the goblet has a much 
longer time constant than the glass. That, in turn, implies that the goblet is very lightly 
damped while the ordinary glass is heavily damped (because the internal forces within 
the glass are not those of a high-quality crystal structure).

The singer causes a sound wave to impinge on the goblet, exerting a small driving 
force at the frequency of the note she is singing. If the singer’s frequency matches the 
natural frequency of the goblet—resonance! Only the lightly damped goblet, like the 
top curve in Figure 14.28, can reach amplitudes large enough to shatter. The restric-
tion, though, is that its natural frequency has to be matched very precisely. The sound 
also has to be very loud.

A singer or musical instrument can shatter 
a crystal goblet by matching the goblet’s 
natural oscillation frequency.

SOLvE The frequency of a simple pendulum is f = 1g/L /2p. 
We’re not given L, but we can find it by analyzing the pendulum’s 
swing down from an inverted position. Mechanical energy is con-
served, and the only potential energy is gravitational potential 
energy. Conservation of mechanical energy Kf + Ugf = Ki + Ugi, 
with Ug = mgy, is

 
1

2
 mvf 

2 + mgyf =
1

2
 mvi 

2 + mgyi

The mass cancels, which is good since we don’t know it, and two 
terms are zero. Thus

 
1

2
 vf 

2 = g(2L) = 2gL

Solving for L, we find

 L =
vf 

2

4g
=

(5.0 m/s)2

4(9.80 m/s2)
= 0.638 m

Now we can calculate the frequency:

 f =
1

2p
 B g

L
=

1

2p
 B 9.80 m/s2

0.638 m
= 0.62 Hz

ASSESS The frequency corresponds to a period of about 1.5 s, 
which seems reasonable.

CHALLENgE ExAMPLE 14.12  A swinging pendulum
A pendulum consists of a massless, rigid rod with a mass at one 
end. The other end is pivoted on a frictionless pivot so that the rod 
can rotate in a complete circle. The pendulum is inverted, with 
the mass directly above the pivot point, then released. The speed 
of the mass as it passes through the lowest point is 5.0 m/s. If the 
pendulum later undergoes small-amplitude oscillations at the bot-
tom of the arc, what will its frequency be?

MODEL This is a simple pendulum because the rod is massless. 
However, our analysis of a pendulum used the small-angle ap-
proximation. It applies only to the small-amplitude oscillations at 
the end, not to the pendulum swinging down from the inverted 
position. Fortunately, energy is conserved throughout, so we can 
analyze the big swing using conservation of mechanical energy.

viSuALizE FiguRE 14.29 is a pictorial representation of the pen-
dulum swinging down from the inverted position. The pendulum 
length is L, so the initial height is 2L.

FiguRE 14.29 Before­and­after pictorial representation of the 
pendulum swinging down from an inverted position.
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A consistent 4-step approach 
provides a problem-solving 
framework throughout the 
book (and all supplements): 
students learn the importance 
of making assumptions (in 
the MODEL step), gathering 
information, and making 
sketches (in the VISUALIZE 
step) before treating the 
problem mathematically 
(SOLVE) and then analyzing 
their result (ASSESS).

Challenge Examples illustrate 
how to integrate multiple 
concepts and use more 
sophisticated reasoning in 
problem-solving, ensuring 
an optimal range of worked 
examples for students to study 
in preparation for homework 
problems.
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S u M M A R y
The goal of Chapter 14 has been to understand systems that oscillate with simple harmonic motion.

Dynamics
SHM occurs when a linear restoring force acts to return a 
system to an equilibrium position.

Horizontal spring

(Fnet)x = -kx

Vertical spring 
The origin is at the equilibrium  
position �L = mg/k.

(Fnet)y = -ky

Both: v = B k

m
  T = 2p Bm

k

Pendulum

(Fnet)t = - 1mg

L 2s
v = B g

L
   T = 2p BL

g

Energy
If there is no friction 
or dissipation, kinetic 
and potential energy are 
alternately transformed 
into each other, but the 
total mechanical energy 
E = K + U is conserved.

  E =
1

2
 mv 2 +

1

2
 kx2

  =
1

2
 m(vmax)

2

  =
1

2
 kA2

In a damped system, the 
energy decays exponentially

E = E0e-t/t

where t is the time constant.

general Principles

Simple harmonic motion (SHM) is a sinusoidal oscillation with 
period T and amplitude A.

Frequency f =
1

T

Angular frequency

 v = 2pf =
2p

T

Position x (t) = A cos(vt + f0)

 = A cos12pt

T
+ f02

Velocity vx(t) = -vmax sin(vt + f0) with maximum speed 
vmax = vA

Acceleration  ax(t) = -v2x (t) = -v2Acos(vt + f0)

SHM is the projection 
onto the x-axis of 
uniform circular motion.

f = vt + f0  

is the phase

The position at time t is

  x (t) = A cos f
  = A cos(vt + f0)

The phase constant f0 
determines the initial condi-
tions:

 x0 = A cos f0  v0x = -vA sin f0

important Concepts

Resonance

When a system is driven by 
a periodic external force, it 
responds with a large-amplitude 
oscillation if fext � f0, where 
f0 is the system’s natural 
oscillation frequency, or 
resonant frequency.

Damping

If there is a drag force D
u

= -bv  

u
, 

where b is the damping constant, 
then (for lightly damped systems)

 x (t) = Ae-bt/2m cos(vt + f0)

The time constant for energy loss 
is t = m/b.

Applications

k
m

0 x

0

k

y m

0

L

s

0

All potential

All kinetic

A
x

�A

t

E

0
0

0.37E0

E0

t

t0

x T
A

�A

x

y

A

x � A cos f
x0 � A cos f0

0

f0

f

Amplitude

fext
f0

t

x

0

�A

A
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oscillatory motion
oscillator
period, T
frequency, f
hertz, Hz
simple harmonic motion, 

SHM

amplitude, A
angular frequency, v
phase, f
phase constant, f0

restoring force
equation of motion
small-angle approximation

linear restoring force
damped oscillation
damping constant, b
envelope
time constant, t
half-life, t1/2

driven oscillation

natural frequency, f0

driving frequency, fext

response curve
resonance
resonance frequency, f0

Terms and Notation

C O N C E P T u A L  Q u E S T i O N S

 1. A block oscillating on a spring has period T = 2 s. What is the 
period if:

 a. The block’s mass is doubled? Explain. Note that you do not 
know the value of either m or k, so do not assume any particu-
lar values for them. The required analysis involves thinking 
about ratios.

 b. The value of the spring constant is quadrupled?
 c. The oscillation amplitude is doubled while m and k are 

unchanged?
 2. A pendulum on Planet X, where the value of g is unknown, oscil-

lates with a period T = 2 s. What is the period of this pendulum if:
 a. Its mass is doubled? Explain. Note that you do not know the 

value of m, L, or g, so do not assume any specific values. The 
required analysis involves thinking about ratios.

 b. Its length is doubled?
 c. Its oscillation amplitude is doubled?
 3. FiguRE Q14.3 shows a position- 

versus-time graph for a particle in 
SHM. What are (a) the amplitude 
A, (b) the angular frequency v, and 
(c) the phase constant f0? Explain.

 4. Equation 14.25 states that 1
2 kA2 =

1
2 m (vmax)

2. What does this 
mean? Write a couple of sentences explaining how to interpret 
this equation.

 5. A block oscillating on a spring has an amplitude of 20 cm. What 
will the amplitude be if the total energy is doubled? Explain.

 6. A block oscillating on a spring has a maximum speed of 20 cm/s. 
What will the block’s maximum speed be if the total energy is 
doubled? Explain.

 7. FiguRE Q14.7 shows a position-versus-time graph for a particle in 
SHM.

 a. What is the phase constant f0? Explain.
 b. What is the phase of the particle at each of the three num-

bered points on the graph?

 8. FiguRE Q14.8 shows a velocity-versus-time graph for a particle in 
SHM.

 a. What is the phase constant f0? Explain.
 b. What is the phase of the particle at each of the three num-

bered points on the graph?

 9. FiguRE Q14.9 shows the potential-energy diagram and the total 
energy line of a particle oscillating on a spring.

 a. What is the spring’s equilibrium length?
 b. Where are the turning points of the motion? Explain.
 c. What is the particle’s maximum kinetic energy?
 d. What will be the turning points if the particle’s total energy is 

doubled?

 10. Suppose the damping constant b of an oscillator increases.
 a. Is the medium more resistive or less resistive?
 b. Do the oscillations damp out more quickly or less quickly?
 c. Is the time constant t increased or decreased?
 11. a.  Describe the difference between t and T. Don’t just name 

them; say what is different about the physical concepts they 
represent.

 b. Describe the difference between t and t1/2.
 12. What is the difference between the driving frequency and the 

natural frequency of an oscillator?

10

0

�10

2 4
t (s)

x (cm)

FiguRE Q14.3 

x

t0

A

�A
1 3

2

FiguRE Q14.7 

vmax

�vmax

v

t0

1 3

2

FiguRE Q14.8 

TE

PE

x (cm)
12 16 20 24 28

Energy (J)

20

15

10

5

0

FiguRE Q14.9 
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Conceptual Questions require 
careful reasoning and can be 
used for group discussions or 
individual work. 
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E x E r c i s E s  a n d  P r o b l E m s

Problems labeled   integrate material from earlier chapters.

Exercises

Section 14.1 Simple Harmonic Motion

  1.  |  When a guitar string plays the note “A,” the string vibrates at 
440 Hz. What is the period of the vibration?

  2.  |  An air-track glider attached to a spring oscillates between the 
10 cm mark and the 60 cm mark on the track. The glider com-
pletes 10 oscillations  in 33 s. What are  the  (a) period,  (b)  fre-
quency, (c) angular frequency, (d) amplitude, and (e) maximum 
speed of the glider?

  3.  ||  An air-track glider is attached to a spring. The glider is pulled 
to  the right and released from rest at  t = 0 s.  It  then oscillates 
with a period of 2.0 s and a maximum speed of 40 cm/s.

  a.  What is the amplitude of the oscillation?
  b.  What is the glider’s position at t = 0.25 s?

Section 14.2 Simple Harmonic Motion and Circular Motion

  4.  |  What are the (a) amplitude, (b) frequency, and (c) phase con-
stant of the oscillation shown in FigurE Ex14.4?

  5.  ||  What are the (a) amplitude, (b) frequency, and (c) phase con-
stant of the oscillation shown in FigurE Ex14.5?

  6.  ||  An  object  in  simple  harmonic  motion  has  an  amplitude  of 
4.0 cm, a frequency of 2.0 Hz, and a phase constant of 2p/3 rad. 
Draw a position graph showing two cycles of the motion.

  7.  ||  An  object  in  simple  harmonic  motion  has  an  amplitude  of 
8.0 cm, a frequency of 0.25 Hz, and a phase constant of -p/2 rad. 
Draw a position graph showing two cycles of the motion.

  8.  |  An object  in simple harmonic motion has amplitude 4.0 cm 
and frequency 4.0 Hz, and at t = 0 s it passes through the equi-
librium point moving to  the right. Write  the function  x (t)  that 
describes the object’s position.

  9.  |  An object in simple harmonic motion has amplitude 8.0 cm 
and frequency 0.50 Hz. At t = 0 s it has its most negative posi-
tion. Write the function x (t) that describes the object’s position.

 10.  ||  An air-track glider attached to a spring oscillates with a period 
of 1.5 s. At t = 0 s the glider is 5.00 cm left of the equilibrium 
position and moving to the right at 36.3 cm/s.

  a.  What is the phase constant?
  b.  What is the phase at t = 0 s, 0.5 s, 1.0 s, and 1.5 s?

Section 14.3 Energy in Simple Harmonic Motion

Section 14.4 The Dynamics of Simple Harmonic Motion

 11.  |  A block  attached  to  a  spring with unknown  spring  constant 
oscillates with a period of 2.0 s. What is the period if

  a.  The mass is doubled?
  b.  The mass is halved?
  c.  The amplitude is doubled?
  d.  The spring constant is doubled?
    Parts a to d are independent questions, each referring to the ini-

tial situation.
 12.  ||  A 200 g air-track glider is attached to a spring. The glider is 

pushed in 10 cm and released. A student with a stopwatch finds 
that 10 oscillations take 12.0 s. What is the spring constant?

 13.  ||  A 200 g mass attached  to a horizontal  spring oscillates at a 
frequency of 2.0 Hz. At t = 0 s, the mass is at x = 5.0 cm and 
has vx = -30 cm/s. Determine:

  a.  The period.  b.  The angular frequency.
  c.  The amplitude.  d.  The phase constant.
  e.  The maximum speed.  f.  The maximum acceleration.
  g.  The total energy.  h.  The position at t = 0.40 s.
 14.  |  The  position  of  a  50  g  oscillating  mass  is  given  by  x (t) =  

(2.0 cm) cos(10t - p/4), where t is in s. Determine:
  a.  The amplitude.  b.  The period.
  c.  The spring constant.  d.  The phase constant.
  e.  The initial conditions.  f.  The maximum speed.
  g.  The total energy.  h.  The velocity at t = 0.40 s.
 15.  ||  A  1.0  kg  block  is  attached  to  a  spring  with  spring  constant 

16 N/m. While the block is sitting at rest, a student hits it with a 
hammer and almost instantaneously gives it a speed of 40 cm/s. 
What are

  a.  The amplitude of the subsequent oscillations?
  b.  The block’s speed at the point where x =

1
2 A?

Section 14.5 Vertical Oscillations

 16.  |  A  spring  is  hanging  from  the  ceiling.  Attaching  a  500  g 
physics book to the spring causes it to stretch 20 cm in order to 
come to equilibrium.

  a.  What is the spring constant?
  b.  From  equilibrium,  the  book  is  pulled  down  10  cm  and  re-

leased. What is the period of oscillation?
  c.  What is the book’s maximum speed?
 17.  ||  A spring with spring constant 15 N/m hangs from the ceiling. 

A ball is attached to the spring and allowed to come to rest. It is 
then pulled down 6.0 cm and released. If the ball makes 30 oscil-
lations in 20 s, what are its (a) mass and (b) maximum speed?

 18.  ||  A spring is hung from the ceiling. When a block is attached 
to  its  end,  it  stretches 2.0 cm before  reaching  its new equilib-
rium length. The block is then pulled down slightly and released. 
What is the frequency of oscillation?

Section 14.6 The Pendulum

 19.  |  A mass on a string of unknown length oscillates as a pendu-
lum with a period of 4.0 s. What is the period if

  a.  The mass is doubled?

t (s)0

x (cm)

10

20

�20

�10
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FigurE Ex14.4 
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Exercises (for each section) 
allow students to build  
their skills and confidence 
with straightforward, one-step 
questions.

The end-of-chapter problems 
are rated by students to 
show difficulty level with the 
variety expanded to include 
more real-world, challenging, 
and explicitly calculus-based 
problems. 
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 b. The string length is doubled?
 c. The string length is halved?
 d. The amplitude is doubled?
  Parts a to d are independent questions, each referring to the ini-

tial situation.
 20. || A 200 g ball is tied to a string. It is pulled to an angle of 8.0� and 

released to swing as a pendulum. A student with a stopwatch 
finds that 10 oscillations take 12 s. How long is the string?

 21. | What is the period of a 1.0-m-long pendulum on (a) the earth 
and (b) Venus?

 22. | What is the length of a pendulum whose period on the moon 
matches the period of a 2.0-m-long pendulum on the earth?

 23. | Astronauts on the first trip to Mars take along a pendulum that 
has a period on earth of 1.50 s. The period on Mars turns out to 
be 2.45 s. What is the free-fall acceleration on Mars?

 24. || A uniform steel bar swings from a pivot at one end with a 
period of 1.2 s. How long is the bar?

Section 14.7 Damped Oscillations

Section 14.8 Driven Oscillations and Resonance

 25. | A 2.0 g spider is dangling at the end of a silk thread. You can 
make the spider bounce up and down on the thread by tapping 
lightly on his feet with a pencil. You soon discover that you can 
give the spider the largest amplitude on his little bungee cord if 
you tap exactly once every second. What is the spring constant 
of the silk thread?

 26. || The amplitude of an oscillator decreases to 36.8% of its initial 
value in 10.0 s. What is the value of the time constant?

 27. || Sketch a position graph from t = 0 s to t = 10 s of a damped 
oscillator having a frequency of 1.0 Hz and a time constant 
of 4.0 s.

 28. | In a science museum, a 110 kg brass pendulum bob swings 
at the end of a 15.0-m-long wire. The pendulum is started at ex-
actly 8:00 a.m. every morning by pulling it 1.5 m to the side and 
releasing it. Because of its compact shape and smooth surface, 
the pendulum’s damping constant is only 0.010 kg/s. At exactly 
12:00 noon, how many oscillations will the pendulum have com-
pleted and what is its amplitude?

 29. || Vision is blurred if the head is vibrated at 29 Hz because the 
vibrations are resonant with the natural frequency of the eyeball 
in its socket. If the mass of the eyeball is 7.5 g, a typical value, 
what is the effective spring constant of the musculature that 
holds the eyeball in the socket?

Problems

 30. || FiguRE P14.30 is the velocity-versus-time graph of a particle in 
simple harmonic motion.

 a. What is the amplitude of the oscillation?
 b. What is the phase constant?
 c. What is the position at t = 0 s?

BIO

 31. | FiguRE P14.31 is the position-versus-time graph of a particle in 
simple harmonic motion.

 a. What is the phase constant?
 b. What is the velocity at t = 0 s?
 c. What is vmax?

 32. || The two graphs in FiguRE P14.32 are for two different vertical 
mass-spring systems. If both systems have the same mass, what 
is the ratio kA/kB of their spring constants?

 33. ||| An object in SHM oscillates with a period of 4.0 s and an am-
plitude of 10 cm. How long does the object take to move from 
x = 0.0 cm to x = 6.0 cm?

 34. || A 1.0 kg block oscillates on a spring with spring constant 
20 N/m. At t = 0 s the block is 20 cm to the right of the equi-
librium position and moving to the left at a speed of 100 cm/s. 
Determine (a) the period and (b) the amplitude.

 35. || Astronauts in space cannot weigh themselves by standing on a 
bathroom scale. Instead, they determine their mass by oscillating 
on a large spring. Suppose an astronaut attaches one end of a 
large spring to her belt and the other end to a hook on the wall of 
the space capsule. A fellow astronaut then pulls her away from 
the wall and releases her. The spring’s length as a function of 
time is shown in FiguRE P14.35.

 a. What is her mass if the spring constant is 240 N/m?
 b. What is her speed when the spring’s length is 1.2 m?

 36. || The motion of a particle is given by x (t) = (25 cm)cos(10t), 
where t is in s. At what time is the kinetic energy twice the po-
tential energy?

 37. || a.  When the displacement of a mass on a spring is 1
2 A, what 

fraction of the energy is kinetic energy and what fraction is 
potential energy?

   b.  At what displacement, as a fraction of A, is the energy half 
kinetic and half potential?

 38. || For a particle in simple harmonic motion, show that vmax =  
(p/2)vavg where vavg is the average speed during one cycle of the 
motion.

 39. || A 100 g block attached to a spring with spring constant 
2.5 N/m oscillates horizontally on a frictionless table. Its veloc-
ity is 20 cm/s when x = -5.0 cm.

 a. What is the amplitude of oscillation?
 b. What is the block’s maximum acceleration?
 c. What is the block’s position when the acceleration is maxi-

mum?
 d. What is the speed of the block when x = 3.0 cm?
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more complex real-world 
situations. Specifically labeled 
problems integrate concepts 
from multiple previous 
chapters.
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 40. || A block on a spring is pulled to the right and released at 
t = 0 s. It passes x = 3.00 cm at t = 0.685 s, and it passes 
x = -3.00 cm at t = 0.886 s.

 a. What is the angular frequency?
 b. What is the amplitude?
  Hint: cos(p - u) = -cos u.
 41. ||| A 300 g oscillator has a speed of 95.4 cm/s when its displace-

ment is 3.0 cm and 71.4 cm/s when its displacement is 6.0 cm. 
What is the oscillator’s maximum speed?

 42. || An ultrasonic transducer, of the type used in medical ultra-
sound imaging, is a very thin disk (m = 0.10 g) driven back and 
forth in SHM at 1.0 MHz by an electromagnetic coil.

 a. The maximum restoring force that can be applied to the disk 
without breaking it is 40,000 N. What is the maximum oscil-
lation amplitude that won’t rupture the disk?

 b. What is the disk’s maximum speed at this amplitude?
 43. || A 5.0 kg block hangs from a spring with spring constant 

2000 N/m. The block is pulled down 5.0 cm from the equilibri-
um position and given an initial velocity of 1.0 m/s back toward 
equilibrium. What are the (a) frequency, (b) amplitude, and 
(c) total mechanical energy of the motion?

 44. || Your lab instructor has asked you to measure a spring constant 
using a dynamic method—letting it oscillate—rather than a stat-
ic method of stretching it. You and your lab partner suspend the 
spring from a hook, hang different masses on the lower end, and 
start them oscillating. One of you uses a meter stick to measure 
the amplitude, the other uses a stopwatch to time 10 oscillations. 
Your data are as follows:

Mass (g) Amplitude (cm) Time (s)

100 6.5  7.8

150 5.5  9.8

200 6.0 10.9

250 3.5 12.4

  Use the best-fit line of an appropriate graph to determine the 
spring constant.

 45. ||| A 200 g block hangs from a spring with spring constant 
10 N/m. At t = 0 s the block is 20 cm below the equilibrium 
point and moving upward with a speed of 100 cm/s. What are 
the block’s

 a. Oscillation frequency?
 b. Distance from equilibrium when the speed is 50 cm/s?
 c. Distance from equilibrium at t = 1.0 s?
 46. || A spring with spring constant k is suspended vertically from 

a support and a mass m is attached. The mass is held at the point 
where the spring is not stretched. Then the mass is released and 
begins to oscillate. The lowest point in the oscillation is 20 cm 
below the point where the mass was released. What is the oscil-
lation frequency?

 47. || While grocery shopping, you put several apples in the spring 
scale in the produce department. The scale reads 20 N, and you 
use your ruler (which you always carry with you) to discover 
that the pan goes down 9.0 cm when the apples are added. If you 
tap the bottom of the apple-filled pan to make it bounce up and 
down a little, what is its oscillation frequency? Ignore the mass 
of the pan.

 48. || A compact car has a mass of 1200 kg. Assume that the car has 
one spring on each wheel, that the springs are identical, and that 
the mass is equally distributed over the four springs.
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 a. What is the spring constant of each spring if the empty car 
bounces up and down 2.0 times each second?

 b. What will be the car’s oscillation frequency while carrying 
four 70 kg passengers?

 49. || The two blocks in FiguRE P14.49 oscillate on a frictionless sur-
face with a period of 1.5 s. The upper block just begins to slip 
when the amplitude is increased to 40 cm. What is the coefficient 
of static friction between the two blocks?

 50. ||| It has recently become possible to “weigh” DNA molecules 
by measuring the influence of their mass on a nano-oscillator. 
FiguRE P14.50 shows a thin rectangular cantilever etched out of 
silicon (density 2300 kg/m3)  with a small gold dot at the end. If 
pulled down and released, the end of the cantilever vibrates with 
simple harmonic motion, moving up and down like a diving 
board after a jump. When bathed with DNA molecules whose 
ends have been modified to bind with gold, one or more mole-
cules may attach to the gold dot. The addition of their mass 
causes a very slight—but measurable—decrease in the oscilla-
tion frequency.

   A vibrating cantilever of mass M can be modeled as a block of 
mass 13 M attached to a spring. (The factor of 13 arises from the mo-
ment of inertia of a bar pivoted at one end.) Neither the mass nor 
the spring constant can be determined very accurately— perhaps 
to only two significant figures—but the oscillation frequency can 
be measured with very high precision simply by counting the os-
cillations. In one experiment, the cantilever was initially vibrating 
at exactly 12 MHz. Attachment of a DNA molecule caused the 
frequency to decrease by 50 Hz. What was the mass of the DNA?

 51. || It is said that Galileo discovered a basic principle of the 
pendulum—that the period is independent of the amplitude—by 
using his pulse to time the period of swinging lamps in the cathe-
dral as they swayed in the breeze. Suppose that one oscillation of 
a swinging lamp takes 5.5 s.

 a. How long is the lamp chain?
 b. What maximum speed does the lamp have if its maximum 

angle from vertical is 3.0�?
 52. || A 100 g mass on a 1.0-m-long string is pulled 8.0� to one side 

and released. How long does it take for the pendulum to reach 
4.0� on the opposite side?

 53. || Orangutans can move by brachiation, swinging like a pendu-
lum beneath successive handholds. If an orangutan has arms that 
are 0.90 m long and repeatedly swings to a 20� angle, taking one 
swing after another, estimate its speed of forward motion in m/s. 
While this is somewhat beyond the range of validity of the small-
angle approximation, the standard results for a pendulum are 
adequate for making an estimate.
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conclusions from data (as 
demonstrated in the new data-
based examples in the text).

Bio problems are set in life-
science, bioengineering, or 
biomedical contexts.



 54. | Show that Equation 14.51 for the angular frequency of a phys-
ical pendulum gives Equation 14.48 when applied to a simple 
pendulum of a mass on a string.

 55. ||| A 15@cm@long, 200 g rod is pivoted at one end. A 20 g ball of 
clay is stuck on the other end. What is the period if the rod and 
clay swing as a pendulum?

 56. ||| A uniform rod of mass M and length L swings as a pendulum 
on a pivot at distance L/4 from one end of the rod. Find an ex-
pression for the frequency f  of small-angle oscillations.

 57. ||| A solid sphere of mass M and radius R is suspended from a 
thin rod, as shown in FiguRE P14.57. The sphere can swing back 
and forth at the bottom of the rod. Find an expression for the 
frequency f  of small-angle oscillations.

 58. || A geologist needs to determine the local value of g. Unfortu-
nately, his only tools are a meter stick, a saw, and a stopwatch. 
He starts by hanging the meter stick from one end and measuring 
its frequency as it swings. He then saws off 20 cm—using the 
centimeter markings—and measures the frequency again. After 
two more cuts, these are his data:

Length (cm) Frequency (Hz)

100 0.61

 80 0.67

 60 0.79

 40 0.96

  Use the best-fit line of an appropriate graph to determine the 
local value of g.

 59. || Interestingly, there have been several studies using cadavers 
to determine the moments of inertia of human body parts, infor-
mation that is important in biomechanics. In one study, the cen-
ter of mass of a 5.0 kg lower leg was found to be 18 cm from the 
knee. When the leg was allowed to pivot at the knee and swing 
freely as a pendulum, the oscillation frequency was 1.6 Hz. What 
was the moment of inertia of the lower leg about the knee joint?

 60. || A 500 g air-track glider attached to a spring with spring con-
stant 10 N/m is sitting at rest on a frictionless air track. A 250 g 
glider is pushed toward it from the far end of the track at a speed 
of 120 cm/s. It collides with and sticks to the 500 g glider. What 
are the amplitude and period of the subsequent oscillations?

 61. || A 200 g block attached to a horizontal spring is oscillating 
with an amplitude of 2.0 cm and a frequency of 2.0 Hz. Just as it 
passes through the equilibrium point, moving to the right, a sharp 
blow directed to the left exerts a 20 N force for 1.0 ms. What are 
the new (a) frequency and (b) amplitude?

 62. || FiguRE P14.62 is a top view of an object of mass m connected 
between two stretched rubber bands of length L. The object rests 
on a frictionless surface. At equilibrium, the tension in each rub-
ber band is T. Find an expression for the frequency of oscilla- 
tions perpendicular to the rubber bands. Assume the amplitude 
is sufficiently small that the magnitude of the tension in the rub-
ber bands is essentially unchanged as the mass oscillates.
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 63. || A molecular bond can be modeled as a spring between two 
atoms that vibrate with simple harmonic motion. FiguRE P14.63 
shows an SHM approximation for the potential energy of an 
HCl molecule. For E 6 4 * 10-19 J it is a good approximation to 
the more accurate HCl potential-energy curve that was shown in 
Figure 10.31. Because the chlorine atom is so much more mas-
sive than the hydrogen atom, it is reasonable to assume that the 
hydrogen atom (m = 1.67 * 10-27 kg) vibrates back and forth 
while the chlorine atom remains at rest. Use the graph to esti-
mate the vibrational frequency of the HCl molecule.

 64. || An ice cube can slide around the inside of a vertical circu-
lar hoop of radius R. It undergoes small-amplitude oscillations 
if displaced slightly from the equilibrium position at the lowest 
point. Find an expression for the period of these small-amplitude 
oscillations.

 65. || A penny rides on top of a piston as it undergoes vertical simple 
harmonic motion with an amplitude of 4.0 cm. If the frequency 
is low, the penny rides up and down without difficulty. If the 
frequency is steadily increased, there comes a point at which the 
penny leaves the surface.

 a. At what point in the cycle does the penny first lose contact 
with the piston?

 b. What is the maximum frequency for which the penny just 
barely remains in place for the full cycle?

 66. || On your first trip to Planet X you happen to take along a 
200 g mass, a 40-cm-long spring, a meter stick, and a stopwatch. 
You’re curious about the free-fall acceleration on Planet X, 
where ordinary tasks seem easier than on earth, but you can’t 
find this information in your Visitor’s Guide. One night you sus-
pend the spring from the ceiling in your room and hang the mass 
from it. You find that the mass stretches the spring by 31.2 cm. 
You then pull the mass down 10.0 cm and release it. With the 
stopwatch you find that 10 oscillations take 14.5 s. Based on this 
information, what is g?

 67. || The 15 g head of a bobble-head doll oscillates in SHM at a 
frequency of 4.0 Hz.

 a. What is the spring constant of the spring on which the head is 
mounted?

 b. The amplitude of the head’s oscillations decreases to 0.5 cm 
in 4.0 s. What is the head’s damping constant?

 68. || An oscillator with a mass of 500 g and a period of 0.50 s has 
an amplitude that decreases by 2.0% during each complete oscil-
lation. If the initial amplitude is 10 cm, what will be the ampli-
tude after 25 oscillations?

 69. || A spring with spring constant 15.0 N/m hangs from the ceiling. 
A 500 g ball is attached to the spring and allowed to come to rest. It 
is then pulled down 6.0 cm and released. What is the time constant 
if the ball’s amplitude has decreased to 3.0 cm after 30 oscillations?

Pivot

R

FiguRE P14.57 

Rubber bands

LL

FiguRE P14.62 

0.08 0.10 0.12 0.14 0.16
Bond length (nm)

Potential energy (J)

4 � 10�19

3 � 10�19

2 � 10�19

1 � 10�19

FiguRE P14.63 

Exercises and Problems    405

7583_Ch14_pp0377-0406.indd   405 6/8/11   3:50 PM
FINAL Proof

An Increased emphasis on 
symbolic answers encourages 
students to work algebraically. 
The Student Workbook also 
contains new exercises to 
help students work through 
symbolic solutions. 



406    c h a p t e r  14 . Oscillations

 70. ||| A 250 g air-track glider is attached to a spring with spring 
constant 4.0 N/m. The damping constant due to air resistance is 
0.015 kg/s. The glider is pulled out 20 cm from equilibrium and 
released. How many oscillations will it make during the time in 
which the amplitude decays to e-1 of its initial value?

 71. || A 200 g oscillator in a vacuum chamber has a frequency of 
2.0 Hz. When air is admitted, the oscillation decreases to 60% 
of its initial amplitude in 50 s. How many oscillations will have 
been completed when the amplitude is 30% of its initial value?

 72. || Prove that the expression for x (t) in Equation 14.55 is a solu-
tion to the equation of motion for a damped oscillator, Equa-
tion 14.54, if and only if the angular frequency v is given by the 
expression in Equation 14.56.

 73. || A block on a frictionless table is connected as shown in Fig-

uRE P14.73 to two springs having spring constants k1 and k2. 
Show that the block’s oscillation frequency is given by

 f = 2f1 

2 + f2 

2

  where f1 and f2 are the frequencies at which it would oscillate if 
attached to spring 1 or spring 2 alone.

 74. || A block on a frictionless table is connected as shown in 
FiguRE P14.74 to two springs having spring constants k1 and k2. 
Find an expression for the block’s oscillation frequency f  in 
terms of the frequencies f1 and f2 at which it would oscillate if 
attached to spring 1 or spring 2 alone.

Challenge Problems

 75. A block hangs in equilibrium from a vertical spring. When a sec-
ond identical block is added, the original block sags by 5.0 cm. 
What is the oscillation frequency of the two-block system?

 76. A 1.00 kg block is attached to a horizontal spring with spring 
constant 2500 N/m. The block is at rest on a frictionless surface. 
A 10 g bullet is fired into the block, in the face opposite the 
spring, and sticks. What was the bullet’s speed if the subsequent 
oscillations have an amplitude of 10.0 cm?

 77. A spring is standing upright on a table with its bottom end fas-
tened to the table. A block is dropped from a height 3.0 cm above 
the top of the spring. The block sticks to the top end of the spring 
and then oscillates with an amplitude of 10 cm. What is the oscil-
lation frequency?

 78. The analysis of a simple pendulum assumed that the mass was 
a particle, with no size. A realistic pendulum is a small, uniform 
sphere of mass M and radius R at the end of a massless string, with 
L being the distance from the pivot to the center of the sphere.

 a. Find an expression for the period of this pendulum.
 b. Suppose M = 25 g, R = 1.0 cm, and L = 1.0 m, typical val-

ues for a real pendulum. What is the ratio Treal /Tsimple, where 
Treal is your expression from part a and Tsimple is the expres-
sion derived in this chapter?

 79. a.  A mass m oscillating on a spring has period T. Suppose 
the mass changes very slightly from m to m + �m, where 
�m V m. Find an expression for �T, the small change in the 
period. Your expression should involve T, m, and �m but not 
the spring constant.

 b. Suppose the period is 2.000 s and the mass increases by 0.1%. 
What is the new period?

 80. FiguRE CP14.80 shows a 200 g uniform rod pivoted at one end. 
The other end is attached to a horizontal spring. The spring is 
neither stretched nor compressed when the rod hangs straight 
down. What is the rod’s oscillation period? You can assume that 
the rod’s angle from vertical is always small.

STOP TO THiNK ANSwERS

Stop to Think 14.1: c. vmax = 2pA/T. Doubling A and T leaves vmax 
unchanged.

Stop to Think 14.2: d. Think of circular motion. At 45�, the particle 
is in the first quadrant (positive x) and moving to the left (negative vx) .

Stop to Think 14.3: c + b + a � d. Energy conservation 12 kA2 =  
 12 m(vmax)2 gives vmax = 1k/m  A. k or m has to be increased or de-
creased by a factor of 4 to have the same effect as increasing or de-
creasing A by a factor of 2.

Stop to Think 14.4: c. vx = 0 because the slope of the position graph 
is zero. The negative value of x shows that the particle is left of the 
equilibrium position, so the restoring force is to the right.

Stop to Think 14.5: c. The period of a pendulum does not depend 
on its mass.

Stop to Think 14.6: Td + Tb � Tc + Ta. The time constant is the 
time to decay to 37% of the initial height. The time constant is inde-
pendent of the initial height.
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