Chapter 5

Empirical models and using statistics to describe
data and quantify uncertainty



Empirical Models

* Unlike theoretical models, empirical models
do not explain how or why a system behaves
as it does, yet it can still accurately predict
how the system will respond under given
conditions.

* Lets use the catapult experiment as an
example of an empirical model.



The Catapult Data

TABLE 5.3 Results of 6 trials for launching a softball
from the slingshot with different pullback settings.

Trial X Distance




Graphical Method
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Figure 5.8 A plot of the slingshot data from Table 5.3 for horizontal pullback X versus flight
distance D. Note that the data points do not lie along a straight line.



Piecewise-linear model
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Figure 5.9 Using a piecewise linear plot to interpolate between two data points.




Numerical Method
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Figure 5.10 A line passing through the points that are one in from the extremes in the data
set yields a fairly good fit to the data.



Numerical Method
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Figure 510 A line passing through the points that are one in from the extremes in the data
set yields a fairly good fit to the data.

Solving this as a straight line in the form of
Y=mx+Db

D=30.67X - 11.33



Numerical Method

TABLE 54 Comparison of launcher trials versus predictions from the numerical
model D = 30.67X — 11.33. Note that the model predicts a negative distance when
the horizontal pullback X 1s 0.25 m.

Trial X Actual Distance Predicted Distance Error
1 0.25 ] —-3.67 —4.67
2 0.50 4 4.00 0.00
3 0.75 10 11.67 1.67
4 1.00 18 19.33 1.33
5 1.25 27 27.00 0.00

6 1.50 36 34.67 -1.33




The Data (20 Trials)

* Assume you got the following data from your
catapult experiment. We already determined
if the rubber is pulled back 1m the ball will
land 18m downrange

TABLE 5,5 Results of 20 trial launches with slingshot spring pulled back 1 m

trials 1-5: 17.5 19.0 16.4 19.3 16.6
trials 6-10: 16.0 17.4 16.7 18.1 LTS
trials 11-15: 15.1 14.2 17.4 15.7 17.8
trials 16-20: 19.3 18.5 15.7 17.9 17.0




Sources of Uncertainty

Design Environmental

Variables Variables
Set accurately?

Does theory fit?

Measured accurately?

Behavioral
Variables

Figure 5.11 Sources of uncertainty in a model.




The scatter plot
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Figure 5.12 Results of 20 trial softball launches with a slingshot pull-back distance of 1 m.



Descriptive Statistics
Measures Central Tendency
Mean

The mean is a particularly informative measure of
the "central tendency" of the variable if it is reported
along with its . Usually we are
interested in statistics (such as the mean) from our
sample only to the extent to which they are
informative about the population. The larger the
sample size, the more reliable its mean. The larger
the variation of data values, the less reliable the
mean.
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Descriptive Statistics

Measures Central Tendency
Median

A measure of central tendency, the median (the
term first used by Galton, 1882) of a sample is
the value for which one-half (50%) of the
observations (when ) will lie above that
value and one-half will lie below that value.
When the number of values in the sample is
even, the median is computed as the average of
the two middle values.
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Descriptive Statistics -

Measures Central Tendency
Mode

A measure of central tendency, the
mode (the term first used by
Pearson, 1895) of a sample is the
value which occurs most frequently
in the sample.
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Descriptive Statistics

Measures of relative standing
Percentiles

The percentile (this term was first used by Galton, 1885a)
of a distribution of values is a number x; such that a
percentage p of the population values are less than or
equal to x.. For example, the 25th percentile (also referred
to as the 5 or lower ) of a variable is a
value (x;) such that 25% (p) of the values of the variable

fall below that value.

Similarly, the 75th percentile (also referred to as the .75
or upper ) is a value such that 75% of the

values of the variable fall below that value and is
calculated accordingly.
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Back to the data

 The data from the first experiment suggested
that for a pull back of 1m the ball should fly

1 8| I l TABLE 54 Comparison of launcher trials versus predictions from the numerical
model D = 30.67X — 11.33. Note that the model predicts a negative distance when
the horizontal pullback X is 0.25 m.

Trial Actual Distance Predicted Distance Error

—-3.67 —~4.67
4.00 0.00

e But the average for us was 17.16m (or 17.4m)
which is closer to 17m than to 18m, WHY? The
model remember predicted 19.33m



Possible Reasons

Maybe there was a stronger tailwind at the time of the first
experiment or a stronger headwind at the time of the second.

Maybe there was a difference in how the launch distance
measurements were made, such as maybe the tape measure
wasn’t pulled taut in the first experiment.

Maybe there was a difference in launch setup, such as setting
the pullback distance according to the position of the back of
the softball versus the front of the softball.

Maybe the chosen “best fit” line inherently overpredicts the
distance for a pull-back of 1 m.



Possible Reasons

Lets consider m:

change in flight distance  _
m = = 30.67

change in pullback

A change in 1/30m in pullback would result in a 1m difference
in flight.

Since this is such a small value, pullback distance between the
experiments is a definite possibility.

Let’s consider how much the data varies about the mean.



Average error about the mean

8 10 12 14 16 18 20
trials

If di IS the launch distance of the ith
trial and d " Is the mean distance,
then the error of the ith trial about
the mean Is




Standard Deviation

* If we calculated the average as the mean of the errors,
however, the positive and negative errors would cancel each
other out, and—as can be easily shown—the mean value of

the ei’s would be zero.

* Instead, to measure the average magnitude of the error, we
commonly take the mean of the squares of the errors and
then take the square root of this value. This quantity is called

the standard deviation of the data.

values x;,i = 1...n, the standard deviation o is:
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Other Measures of Dispersion

Measures of Dispersion
Sample Range

The sample range, R is the difference between the
largest and the smallest values in the dataset.

Sample Variance

The unbiased sample estimate of the population
variance is computed as:

s? = 2(x.-xbar)?/n-1
where
Xbar is the sample mean
N is the sample size.



Other Measures of Dispersion

Inter-Quartile Range

The difference between the 75 and 25th
percentiles



Probability

* Taken together, the mean and the standard
deviation provide a compact way for
describing the results of the launch
experiment.

 We would need more information, however, in
order to answer the question:

 How likely is it that a softball launched with a
pullback of 1 m will land within 1 m of 18 m?



Probability

* |t's important to realize that for any real
experiment that has a fixed number of trials,
the best we can do is estimate a probability.

* Note, the accuracy of the estimate increases
with the number of trials.

. : o number of successful trials
stimated experimental probability = -

total number of trials




Solution

Estimating Probabilities for the Slingshot
Given the experimental data in Table 5.5 for launching a softball with 1 m pullback
from the slingshot estimate the probability of a launch (a) landing less than 1 m
away from a target at 18 m, (b) landing short of this range, (¢) landing beyond this
range.

Given: The experimental results of 20 trial launches

Find: Estimated probabilities for launches in the ranges (a) d < 17, (b) 17<d <19,
(c)d = 19.

Plan: Count the number of launches that landed in each of the three ranges and
divide by the number of trials, which is 20.

Analysis: The number of trials in each of the ranges and the corresponding prob-
abilities are as follows:

§)
d<17: 9trials = P=— =045
20
. 8
17<d<19: 8trials — R A T 0.40
, , 3 _
d>19: 3tnals = P=—=0.15
20

Note that the sum of the three probabilities is 100 percent. This is to be expected,
since the three ranges span all possible distances, without overlapping.



Hyugen’s Game of Chance

* In his Games of Chance, Huygens considered in
particular the question of the expected gain or loss
from a bet. He states that if there are p chances of
winning (or losing) a sum of money a and g chances
of winning (or losing) a sum of money b, all chances
having equal weight, then the expected payoff from
the bet is:

: pa + gb
expected gain =

p+q




Example
5.2

Solution

A Fair Bet?

Suppose someone offers you a bet that he will pay you $1.25 if you can launch a
softball that will land less than 1 m from a target at 18 m, and otherwise, you must
pay him $1.00. Should you take the bet?

We can solve this problem using Huygens’ formula for expected gain together with
the results of the second launch experiment to estimate the chances of winning or
losing. Out of the 20 trials in the experiment, 8 landed less than 1 m from a target
at 18 m and 12 landed outside of this range. With this estimation, the solution is as
follows:

Given: 8 chances of winning $1.25 and 12 chances of losing $1.00

Find: the expected gain

Plan: Substitute values into Huygens’ formula, Equation (5.5)

Analysis: For this example,

p=2_8 g =12 qg=12 b=-1.00

: pa + gb
expected gain = ———
P+q
(8 x 1.25) + (12 x —1.00)
B 8+ 12
= —0.10

According to this analysis, you would expect to lose 10 cents for every time that
you play the game, so this would not be a good bet. On the other hand, from our
earlier analysis, we determined that there is likely a systematic error that is causing
launches to land about 1 m short of what the model predicts. If we pulled the
spring back a few extra centimeters with each launch, we could imagine shifting
the distances of each of the trials from Table 5.5 out by approximately 1 m. In this
case, there would be 10 trials within the winning range and 10 trials outside of it.
This changes the expected gain to

(10 x 1.25) 4 (10 x —1.00) (

10 4+ 10 T

which says that you could expect to win 12.5 cents for every game played, which is
a pretty good bet. Ultimately, the choice is yours!




Frequency of Results and Histograms

* |n the solution of Example 5.1, we essentially
sorted the results of the slingshot ex-
periment in Table 5.5 into three “bins”
according to distance—launches less than 17
m, between 17 m and 19 m, and greater than
19 m—and then counted the number of items
in each bin.

* We can get a more detailed picture of the
distribution of launch distances by sorting
them into finer bins.



Frequency of Results and Histograms

TABLE 5.6 Counts or frequencies of launch distances sorted into bins.

bid ID count probability

i range N(@i) P@i)

14 14 <d<15 l 0.05

15 15<d<16 3 0.15

16 16 <d<17 4 0.20

17 17 <d <18 7 0.35

18 1I8<d<19 2 0.10

19 19 <d<?20 3 0.15
Total 14 <d<20 20 1.00

ZN(!’ ) = number of trials

Similarly, the sum of the probabilities must equal 1, or

ZP(:‘) =1




Histograms
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In the case on the left, the probability that the distance is less than 17 corresponds to
the area of the first three bars, which represent 40 percent of the area of the histogram.

The median of the data, the point at which there is an equal probability of being either
above or below it, lies somewhere in the middle of the fourth bar.



Histograms
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The Bell Curve

We can see that our data roughly fits a bell curve
more formally known as a normal or Gaussian
distribution.

Flip a coin 1M times, let the variable X be the
number of times the coin comes up heads.

The Gaussian distribution is then a plot of the
probability that X will have a certain value.

The greatest probability is that the coin will come up
heads around half the time (500,000 times).



The Bell Curve

The mean of the distribution is p.

The probability decreases as as X gets smaller
or larger than .

Slowly at first, then quite quickly thereafter.

Basically, the probability that X lies between p
—oand pu+ ois 68%.



The Bell Curve
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The Bell Curve
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The Bell Curve

If an experiment follows a normal distribution,
we can take advantage of this.

Our data is fairly normally distributed.

So we can say there is a 68% chance that our
ball will land +-1.35 m away from 17.16m.

IMPORTANT, this would not be true if our data
was skewed to the left or right.



Measures of Normality

Kurtosis

Kurtosis (the term first used by Pearson, 1905) measures
the "peakedness" of a distribution. If the kurtosis is clearly
different than O, then the distribution is either flatter or

more peaked than normal; the kurtosis of the
is 0. Kurtosis is computed as:
Kurtosis = [n*(n+1)*M, - 3*M,*M,*(n-1)] / [(n-1)*(n-2)*(n-
3)*s4]
where:
M; is equal to: Z(x-Mean,)
N is the valid number of cases

S#is the standard deviation (sigma) raised to the fourth
power
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Measures of Normality

Skewness

Skewness (this term was first used by Pearson, 1895)
measures the deviation of the distribution from
symmetry. If the skewness is clearly different from O,
then that distribution is , While normal

distributions are perfectly

Skewness = n*M; /[(n-1)*(n-2)*s3]
where
M, is equal to: Z(x-Mean )3

S3 is the standard deviation (sigma) raised to the
third power

n is the valid number of cases.
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Trial

1
2
3
4
5

W)

X

0.25
0.50
0.75
1.00
1.25
1.50

Model Error

TABLE 54 Comparison of launcher trials versus predictions from the numerical
model D = 30.67X — 11.33. Note that the model predicts a negative distance when
the horizontal pullback X 1s 0.25 m.

Actual Distance
]
4

18
27

Predicted Distance

—~3.67
4.00
11.67
19.33
27.00
34.67

Error

—4.67
0.00
1.67
1.33
0.00

-1.33




